

Wednesday, 1 July 2009

Fourier transforms are at the heart of interferometry

Jean Baptiste Joseph Fourier buried 3.5 km from where we are now

Parlez-vous interferometry?
what the image you want is convolved with, i.e. the PSF
How you have sampled the FT of what you want to observe
Single antenna pair (at one instant, corresponds to one sampling of UV-plane)
Object of known structure , so we know what its amplitude & phase should be
A nearby, point source

	VLBI observations of SN1993J	
	Shell-like radio structure resolved 239 days after outburst	
	VLBI follow-up monitoring program: over ~9 years and 3 frequencies	
	Accurate determination of explosion centre Proper motion limits Radio light curves and spectra Measurement of expansion speed and deceleration etc.	
	Extensive sequence of images of the expanding shell	
Me	Marcaide et al., Noture (1995); Bietenholz et al., ApJ (2001; 2003); Bartel et al., ApJ (200	2)

Simulated VLBI images

Wednesday, 1 July 2009

Wednesday, 1 July 2009

<section-header><figure><section-header><text>

Incomplete sampling of the Fourier plane can impart false, complex structure to a morphologically simple source These effects are certainly partially, and potentially fully responsible for the evolving complex structure in SN1993J If SN1993J has genuine clumpy structure, and it is *not* a smooth sphere (it probably isn't), the VLBI observations cannot tell the difference between these two cases Mitigation: simulations in parallel with observations Full description in **Heywood et al (2009)**

Snapshot observation 2 hours before transit

Wednesday, 1 July 2009

Wednesday, 1 July 2009

ALMA

- Atacama Large Millimetre/submillimetre Array
- Aperture synthesis array optimised for millimetre and sub-millimetre wavelengths
- High, dry site, Chajnantor Plateau, Chile (5000m)
- North America (NRAO) + Europe (ESO) + Japan (NAOJ) + Chile
- Fifty 12-m dishes, baselines from 15 m to 14 km - few arcsec to 5 milli-arcsec resolution
- ALMA Compact Array 12x7-m dishes, + total power
 providing sensitivity to larger structures
- 8-GHz bandwidth, 1 mJy in 1 second at 350 GHz!
 spectral resolution down to tens m/s

LMA	A M S Richards EVLA May 2009	р	Printed: 22/06/09	
Nednes	day. 1 July 2009			

- Baseline range 15m 14.5 km + ACA + single dish
- Primary beam / arcsec $\approx 17 (\lambda/\text{mm}) [12\text{m dish}]$
- Resolution/ arcsec ≈ 0.2(λ/mm)/(max baseline/km))
 0.04 arcsec at 100 GHz, 14.5 km baseline
 0.005 arcsec at 900 GHz, 14.5 km baseline
- ■Wide bandwidth (8 GHz/polarization), low noise temperatures, good site and antennas, ... → excellent continuum sensitivity and wide spectral coverage

Õ

Full polarization

Vednesday, 1 July 200

ALMA

CMERLIN

Prototype interferometer

 \bigcirc

e -MERLIN capabilities

- Sub-mas ICRF astrometry (in-beam calibration)
- Full polarization

CMERLIN

- Resolution matches HST/JWST, ALMA
- •VO access to customised archive products
- RadioNet. NRAO software collaborations

	L-band	C-band	K-band			
GHz/cm	1.3-1.725 / 23-17.4	4.2-7.8 / 7.1-3.8	21.5-24.5 / 1.4-1.2			
Ang. resol'n	220 - 110 mas	70 - 30 mas	13 - 8 mas			
FoV	13 - 30 arcmin	4 - 7 arcmin	2 arcmin			
Continuum	sensitivity /beam	sensitivity /beam	sensitivity /beam			
	(max Dn /subband)	(max Dn /subband)	(max Dn /subband)			
3s 12 hr / 4 hr	14 nJy / 25 nJy	6 nJy / 10 nJy	15 nJy / 26 nJy			
dnesday, 1 July 2009						

Atmospheric windows

e -MERLIN capabilities

- Resolution matches HST/JWST/ALMA - Sub-mas ICRF astrometry, in-beam calibration
 - Full polarization
- 6 mJy 3-s sensitivity in 12 hr at 4-8 GHz (2-GHz bw) 40-mas resolution, up to 8-arcmin field of view
- ~15 mJy continuum sensitivity at other frequencies
- Spectral line sensitivity 7-20 mJy in 0.1 km/s
- · Early science later this year, full operations 2010 - Open access via UK PATT peer review
 - Joint observations with EVN/ Global VLBI
- http://www.merlin.ac.uk

FVLA May 2009 n ay, 1 July 2009

Remarkably important tip regarding CLEAN

• Well worth taking the time to centre the brightest point on the dirty image on the centre of a pixel.

Pixel size and image size

- Pixel size
- should satisfy sampling theorem for longest baselines, $\Delta x <$ 1/2 u_{max} , $\Delta y <$ 1/2 v_{max}
- In practice, use 3-5 pixels across dirty beam
- Image size

Wednesday, 1 July 2009

- Image size 2 x primary beam
- Sometimes larger

Deconvolution via CLEAN

- Identify strongest feature in dirty image
- Add a fraction g (loop gain) of this point source to the "clean components" list
- Subtract this fraction multiplied by the beam from the dirty image
- Repeat...

Wednesday, 1 July 2009

Wednesday, 1 July 2009

• Finally, convolve clean component list with clean beam and add back to (cleaned) dirty image to give restored image

Self-calibration

- a priori calibration not perfect
- calibration solutions from a different time, different direction from target
- Self-cal aims to find antenna-based errors (N complex gains) while making use of model of your target. N(N-1)/2 visibilities.
- Absolute positional information is preserved IF model has correct initial position
- Dangerous if target is complex, and/or signal-to-noise is low
- Iterative technique: start with conservative model, improve...

When self-calibration is risky / impossible

When your target source is too weak and feeble to self-calibrate, then need to use phase-referencing technique (extreme form of which is fast-switching).

Rules of thumb for self-cal

- Start with phase self-cal. (Meaning no amplitude self-cal)
- Short solution interval (~30 seconds)
- As final(ish) step: amplitude+phase self-cal (~20 minutes)
- Only include baselines in model if their flux is included

sday, 1 July 2009

