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OUTLINE

• Introduction and general consideration
• Motivation: why do we need statistics?
• Probabilities/Distributions
• Frequentist vs. Bayes

• Statistics in X-ray Analysis - use Sherpa CIAO
• Poisson Likelihood
• Parameter Estimation
• Statistical Issues
• Hypothesis Testing

• References and Summary
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3Why do we need Statistics?
• How do we take decisions in Science?

Tools: instruments, data collections, reduction,
classifications – tools and techniques

Decisions: is this hypothesis correct? Why not? Are
these data consistent with other data? Do we get an
answer to our question? Do we need more data?

• Comparison to decide:
– Describe properties of an object or sample:

Example:
 Is a faint extension
a jet or a point source?

GB 1508+5714
z=4.3

Siemiginowska et al (2003) 
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4Stages in Astronomy Experiments

OBSERVE Carefully Experiment design, What? Number
exposure time  (S) of objects, Type? (S)

REDUCE Algorithms calibration files               data quality
QE,RMF,ARF,PSF (S) Signal-to-Noise (S)

ANALYSE Parameter Intensity, positions Frequentist
Estimation,   (S) Bayesian?
Hypothesis
testing (S)                                              (S)

CONCLUDE       Hypothesis Distribution tests, Belivable,
testing  (S) Correlations (S) Repeatable,

Understandable? (S) 

REFLECT Carefully Mission achieved? The next
A better way? Observations (S) 
We need more data!
(S) 

 Stage How Example Considerations

Wall & Jenkins (2003) 
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 Statistic is a quantity that summarizes data

=> Astronomers cannot avoid Statistics

Statistics are combinations of data that do not
depend on unknown parameters:
Mean, averages from multiple experiments etc.
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6Definitions
• Random variable: a variable which can take on different numerical

values, corresponding to different experimental outcomes.
– Example: binned data Di , which can have different values even when

an experiment is repeated exactly.
• Statistic: a function of random variables.

– Example: data Di , or a population mean

• Probability sampling distribution: the normalized distribution from
which a statistic is sampled. Such a distribution is commonly denoted
p(X |Y ), “the probability of outcome X given condition(s) Y,” or
sometimes just p (X ). Note that in the special case of the Gaussian (or
normal) distribution, p (X ) may be written as N(µ,σ2), where µ is the
Gaussian mean, and σ2 is its variance.
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Probability Distributions
Probability  is crucial in decision process:

Example:

Limited data yields only partial idea about the line width
in the spectrum. We can only assign the probability to
the range of the line width roughly matching this
parameter. We decide on the presence of the line by
calculating the probability.



1st School on Multiwavelegth Astronomy
Paris, July, 2009

Statistics,
Aneta Siemiginowska

8

The discrete Poisson distribution:

      prob(Di)=

probability of finding Di events (counts) in bin i
(energy rage) of dataset D (spectrum) in a given
length of time (exposure time), if the events occur
independently at a constant rate Mi  (source
intensity).

The Poisson Distribution

Things to remember:
• Mean   µ= E [Di] = Mi
• Variance:   V [Di] = Mi
• cov[Di1 , Di2] = 0 => independent
• the sum of n Poisson-distributed variables is

itself Poisson-distributed with variance:

Collecting X-ray data  => Counting individual photons
                 => Sampling from Poisson distribution
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As Mi => ∝  Poisson distribution
converges to Gaussian distribution
 N(µ = Mi ; σ2 = Mi )
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Comparison of Poisson distributions (dotted) of mean µ = 2 and 5 with normal distributions of the same mean
and variance (Eadie et al. 1971, p. 50).

Poisson vs. Gaussian Distributions – Low Number of Counts

µ=2

µ=5



1st School on Multiwavelegth Astronomy
Paris, July, 2009

Statistics,
Aneta Siemiginowska

10

Comparison of Poisson distributions (dotted) of mean µ = 10, 25 and 40 w ith normal distributions of the same
mean and variance (Eadie et al. 1971, p. 50).

µ=10

µ=25

µ=40

Poisson vs. Gaussian Distributions
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11Gaussian Distribution
For large µ->∞ Poisson (and the Binomial, large T) distributions
converge to Gaussian (normal) distributions.

         1
prob(x) =    exp[-(x-µ)2/2σ2]

      σ√2π
Mean - µ
Variance - σ2

Note:  Importance of the Tails!

±2σ range covers 95.45% of the area, so 2σ result has less
than 5% chance of occurring by chance, but because of
the error estimates this is not the acceptable result. Usually
3σ or 10σ  have to be quoted and the convergence to
Gaussian is faster in the center than in the tails!
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12Central Limit Theorem
The true importance of the Gaussian distribution:
Regardless of the original distribution - an
averaging will produce a Gaussian distribution.

Form averages Mn  from repeated
drawing of n samples from a
population with finite mean µ and
variance σ2

       (Mn-µ)
     
        σ/√n

as n→∞
µ=0, σ2=1

=> Gaussian
Distribution

single

averages
of 4

averages
of 2

averages
of  16

200 y values drawn from exp(-x) function
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13Bayesian vs. Classical

Classical Approach:

Assuming the true distance D0  then D
is normally distributed around  D0  with a
standard deviation of 0.1. Repeating
measurement will yield many estimates
of distance D  which all scatter around
true D0.

Assume the thing (distance) we want to
know and tell us  how the data will
behave.

Bayesian Approach:

Deduce directly the probability
distribution of D0 from the data.
Assumes the data and tell us the thing
we want to know. No repetition of
experiment.

Example:
              D = 8.5∓0.1 Mpc
Does not describe probability that a true value is between 8.4 and 8.6.
We assume that a Gaussian distribution applies and knowing the distribution of
errors we can make probabilistic statements.



1st School on Multiwavelegth Astronomy
Paris, July, 2009

Statistics,
Aneta Siemiginowska

14

X-ray Analysis
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Main Steps in Analysis

• Data:
• Write proposal, win and obtain new data

• Models:
• model library that can describe the physical process in the source
• typical functional forms or tables, derived more complex models -

plasma emission models etc.
• parameterized approach - models have parameters

• Optimization Methods:
• to apply model to the data  and adjust model parameters
• obtain the model description of your data
• constrain model parameters etc. search of the parameter space

• Statistics:
•  a measure of the model deviations from the data
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16What do we do in X-rays?
Example:

I've observed my source, reduce the data and finally got my X-ray
spectrum –  what do I do now? How can I find out what does the
spectrum tell me about the physics of my source?

Run XSPEC or Sherpa! But what do those programs really do?

Chandra ACIS-S

Fit the data => C(h)=∫R(E,h) A(E) M(E,θ)dE

Assume a model and look for the best model
parameters which  describes the observed
spectrum.

Need a Parameter Estimator - Statistics

Counts Response
     Effective Area

Model

h- detector channels
E- Energy
θ- model parameters
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• Parameterized models:  f(E,Θi)  or f(xi,Θi)

absorption - NH

photon index of a power law function - Γ

blackbody temperature kT

• Composite models:
 combined individual models in the library into a model that

describes the observation

• Source models, Background models:

set_model(“xsphabs.abs1*powlaw1d.p1”)
set_model(“const2d.c0+gauss2d.g2”)

Modeling: Models

set_source(2,"bbody.bb+powlaw1d.pl+gauss1d.line1+gauss1d.line2")
set_bkg_model(2,”const1d.bkg2”)
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18Modeling: Model Library

• Model Library  in Sherpa includes standard XSPEC models and other
1D and 2D functions

• User Models:
– Python or Slang Functions
load_user_model, add_user_pars

– Python and Slang interface to
C/C++ or Fortran code/functions

sherpa-11> list_models()
['atten',
 'bbody',
 'bbodyfreq',
 'beta1d',
 'beta2d',
 'box1d',…

Example Function myline:
def myline(pars, x):
    return pars[0] * x + pars[1]

In sherpa:
from myline import *

load_data(1, "foo.dat")
load_user_model(myline, "myl")
add_user_pars("myl", ["m","b"])
set_model(myl)
myl.m=30
myl.b=20
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Modeling: Parameters
sherpa-21> set_model(xsphabs.abs1*xszphabs.zabs1*powlaw1d.p1)
sherpa-22> abs1.nH = 0.041
sherpa-23> freeze(abs1.nH)
sherpa-24> zabs1.redshift=0.312

sherpa-25> show_model()
Model: 1
apply_rmf(apply_arf((106080.244442 * ((xsphabs.abs1 * xszphabs.zabs1)*powlaw1d.p1))))
   Param        Type          Value          Min          Max      Units
   -----              ----             -----             ---           ---           -----
   abs1.nh          frozen        0.041        0       100000 10^22 atoms / cm^2
   zabs1.nh        thawed            1          0       100000 10^22 atoms / cm^2
   zabs1.redshift frozen        0.312        0           10
   p1.gamma      thawed            1       -10           10
   p1.ref              frozen             1      -3.40282e+38  3.40282e+38
   p1.ampl          thawed             1            0  3.40282e+38
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20Parameter Estimators: Statistics

Large variance

Best

Biased

θ0

S
ta

tis
tic

Requirements on Statistics:

• Unbiased
- converge to true value with
repeated measurements

• Robust
– less affected by outliers

• Consistent
– true value for a large sample
size (Example: rms and Gaussian
distribution) 

• Closeness
- smallest variations from the
truth
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One can use the Poisson distribution to assess the probability of sampling
data Di given a predicted (convolved) model amplitude Mi. Thus to assess the
quality of a fit, it is natural to maximize the product of Poisson probabilities in
each data bin, i.e., to maximize the Poisson likelihood:

In practice, what is often maximized is the log-likelihood,

L = logℒ. A well-known statistic in X-ray astronomy which is related to L is the
so-called “Cash statistic”:

Maximum Likelihood:
Assessing the Quality of Fit
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L(X1,X2,….XN) = P(X1,X2,….XN|Θ) 

= P(X1 |Θ) P(X2 |Θ)…. P(XN |Θ)
= ∏ P(Xi|Θ)

Likelihood Function

 Model 
parametersObserved Counts Probability

DistributionLikelihood

 P - Poisson Probability Distribution for X-ray data
X1,….XN - X-ray data - independent
Θ - model parameters
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23Likelihood Function: X-rays Example
• X-ray spectra modeled by a power law function:

f(E)= A * E-Γ

E - energy;    A, Γ - model parameters: a normalization and a slope

Predicted number of counts:

Mi = ∫R(E,i)*A(E) AE-Γ dE

For A = 0.001 ph/cm2/sec, Γ=2 than in channels i= (10, 100, 200)
Predicted counts: Mi = (10.7, 508.9, 75.5)
Observed Xi  = (15, 520, 74)
Calculate individual probabilities:
Use Incomplete Gamma Function
Γ(Xi, Mi)

• Finding the maximum likelihood means finding the set of model
parameters that maximize the likelihood function
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If the hypothesized θ is close to the true value, then we expect
a high probability to get data like that which we actually found.
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25(Non-) Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly used as it should
be. Some reasons why include:

•  a historical aversion to computing factorials;

•  the fact the likelihood cannot be used to fit “background subtracted”
spectra;

•  the fact that negative amplitudes are not allowed (not a bad thing
physics abhors negative fluxes!);

• the fact that there is no “goodness of fit" criterion, i.e. there is no easy
way to interpret ℒmax (however, cf. the CSTAT statistic); and

•  the fact that there is an alternative in the Gaussian limit: the χ2

statistic.
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26χ2   Statistic

Definition:   χ2= ∑i(Di-Mi)
2/σi

2

The  χ2 statistics is minimized in the fitting the data,
varying the model parameters until the best-fit model
parameters are found for the minimum value of the
χ2 statistic

Degrees-of-freedom = k-1- N

N – number of parameters
K – number of spectral bins
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Generally, the χ2 statistic is written as:

where      represents the (unknown!) variance of the Poisson distribution from
which Di is sampled.

  χ2 Statistic

Data Variance  Di
Model Variance  Mi
Gehrels     [1+(Di+0.75)1/2]2
Primini  Mi from previous best-fit
Churazov  based on smoothed data D
“Parent”
Least Squares 1

Note that some X-ray data analysis routines may estimate σi for you during data
reduction. In PHA files, such estimates are recorded in the STAT_ERR column.

“Versions” of the χ2 Statistic
2
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Statistics in Sherpa

sherpa-12> list_stats()
['leastsq',
 'chi2constvar',
 'chi2modvar',
 'cash',
 'chi2gehrels',
 'chi2datavar',
 'chi2xspecvar',
 'cstat']
sherpa-13> set_stat(“chi2datavar”)
sherpa-14> set_stat(“cstat”)

•  χ2 statistics with different weights
•  Cash and Cstat based on Poisson likelihood
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29Statistical Issues: Bias
• Sampling distributions:

• For model M(θ0) simulate (sample) a large number of data sets
• fit the model (in respect to θ)
• Collect distributions for each parameter

• Statistics (e.g., χ2 ) is biased if the mean of these distributions (E[θ k]) differs from the true
values θo.

• The Poisson likelihood is an unbiased estimator.
• The χ2 statistic can be biased, depending upon the choice of σ:

– Using the Sherpa FAKEIT, we simulated 500 datasets from a constant model with
amplitude 100 counts.

– We then fit each dataset with a constant model, recording the inferred amplitude.

Statistic    Mean Amplitude
Gehrels                           99.05
Data Variance            99.02
Model Variance          100.47
“Parent”              99.94
 Primini            99.94
 Cash            99.98
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A demonstration of bias.  Five hundred datasets are sampled from a constant model with amplitude 100 and then
are fit with the same constant amplitude model, using χ2 with data variance. The mean of the distribution of fit
amplitude values is not 100, as it would be if the statistic were an unbiased estimator.
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31Statistics: Example of Bias

Simulation: ~60,000 counts 
1/ Assume model parameters

2/ Simulate a spectrum - use
fakeit - fold through response
and add a Poisson noise.

3/ Fit each simulated spectrum
assuming different weighting of
χ2 and Cash statistics

4/ Plot results

Line shows the assumed
parameter value  in the
simulated model.

underestimated overestimated

In High S/N data!
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Fitting: Search the Parameter Space

sherpa-28> fit()
Dataset               = 1
Method                = levmar
Statistic              = chi2datavar
Initial fit statistic  = 644.136
Final fit statistic    = 632.106 at function evaluation

13
Data points           = 460
Degrees of freedom    = 457
Probabil ity [Q-value] = 9.71144e-08
Reduced statistic      = 1.38316
Change in statistic    = 12.0305
   zabs1.nh       0.0960949
   p1.gamma       1.29086
   p1.ampl        0.000707365

sherpa-29> print get_fit_results()
datasets   = (1,)
methodname = levmar
statname   = chi2datavar
succeeded  = True
parnames   = ('zabs1.nh', 'p1.gamma', 'p1.ampl')
parvals    = (0.0960948525609, 1.29085977295,
0.000707365006941)
covarerr   = None
statval    = 632.10587995
istatval   = 644.136341045
dstatval   = 12.0304610958
numpoints  = 460
dof        = 457
qval       = 9.71144259004e-08
rstat      = 1.38316385109
message    = both actual and predicted relative reductions in the
sum of squares are at most
ftol=1.19209e-07
nfev       = 13
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• Optimization - finding a minimum (or maximum) of a function:

     “A general function f(x) may have many isolated local minima, non-isolated
minimum hypersurfaces, or even more complicated topologies. No finite
minimization routine can guarantee to locate the unique, global, minimum of
f(x) without being fed intimate knowledge about the function by the user.”

• Therefore:
1. Never accept the result using a single optimization run; always test the minimum using a

different method.

2. Check that the result of the minimization does not have parameter values at the edges of the
parameter space. If this happens, then the fit must be disregarded since the minimum lies
outside the space that has been searched, or the minimization missed the minimum.

3. Get a feel for the range of values of the fit statistic, and the stability of the solution, by starting
the minimization from several different parameter values.

4. Always check that the minimum "looks right" using a plotting tool.
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Fitting: Optimization Methods

• “Single - shot” routines, e.g, Simplex and Levenberg-
Marquardt in Sherpa

     start from a guessed set of parameters, and then search to improve
the parameters in a continuous fashion:

– Very Quick
– Depend critically on the initial parameter values
– Investigate a local behaviour of the statistics near the guessed parameters, and

then make another guess at the best direction and distance to move to find a
better minimum.

– Continue until all directions result in increase of the statistics or a number of steps
has been reached

• “Scatter-shot” routines, e.g. Monte Carlo in Sherpa
   examines parameters over the entire permitted parameter space to

see if there are better minima than near the starting guessed set of
parameters.
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Statistical Issues

• Bias
• Goodness of Fit
• Background Subtraction
• Rebinning
• Errors
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• A typical “dataset” may contain multiple spectra, e.g source and “background”
counts, and one or more with only “background” counts.

– The “background” may contain cosmic and particle contributions, etc., but we'll 
ignore this complication and drop the quote marks.

• If possible, one should model background data:
⇒ Simultaneously fit a background model MB to the background dataset(s) Bj , and a

source plus background model MS + MB to the raw dataset D.
⇒ The background model parameters must have the same values in both fits, i.e., do

not fit the background data first, separately.
⇒ Maximize Lbx LS+B or minimize

• However, many X-ray astronomers continue to subtract the background data
from the raw data:

   n is the number of background datasets, t is the observation time, and b is the
“backscale” (given by the BACKSCAL header keyword value in a PHA file),
typically defined as the ratio of data extraction area to total detector area.

Statistical Issues: Background Subtraction
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Figure 8: Top: Best-fit of a power-law times galactic absorption model to the source spectrum of supernova remnant G21.5-0.9.
Bottom: Best-fit of a separate power-law times galactic absorption model to the background spectrum extracted for the same source.
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38Statistical Issues: Background Subtraction

• Why subtract the background?
– It may be difficult to select an appropriate model shape for the

background.
– Analysis proceeds faster, since background datasets are not fit.
– “It won't make any difference to the final results.”

• Why not subtract the background?
– The data    are not Poisson-distributed -- one cannot fit them with the

Poisson likelihood. (Variances are estimated via error propagation:

– It may well make a difference to the final results:
∗ Subtraction reduces the amount of statistical information in the

analysis quantitative accuracy is thus reduced.
∗ Fluctuations can have an adverse effect, in, e.g., line detection.
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• Rebinning data invariably leads to a loss of statistical information!
• Rebinning is not necessary if one uses the Poisson likelihood to make statistical

inferences.
• However, the rebinning of data may be necessary to use χ2 statistics, if the number

of counts in any bin is <= 5. In X-ray astronomy, rebinning (or grouping) of data may
be accomplished with:
– grppha in  FTOOLS

– dmgroup, in CIAO.

– Interactive grouping with group_ functions in Sherpa

One common criterion is to sum the data in adjacent bins until the sum
equals five (or more).

• Caveat: always estimate the errors in rebinned spectra using the new data
in each new bin (since these data are still Poisson-distributed), rather than
propagating the errors in each old bin.
⇒  For example, if three bins with numbers of counts 1, 3, and 1 are grouped to

make one bin with 5 counts, one should estimate V[D’= 5] and not V[D’] = V[D1 =
1] + V[D2 = 3] + V [D3 = 1]. The propagated errors may overestimate the true
errors.



1st School on Multiwavelegth Astronomy
Paris, July, 2009

Statistics,
Aneta Siemiginowska

40Statistical Issues: Systematic Errors
• There are two types of errors: statistical  and systematic errors.
• Systematic errors are uncertainties in instrumental calibration:
• Assuming: exposure time t, perfect energy resolution, an effective

area Ai with the uncertainty σA,i .

– the expected number of counts in bin i   Di = Dg,i(ΔE )tAi.
– the uncertainty in Di

 σDi = Dg,i(ΔE )tσA,I = Dg,i(ΔE )tfiAi = fiDi

• fiDi  - the systematic error ; in PHA files, the quantity fi is recorded in the SYS_ERR
column.

• Systematic errors are added in quadrature with statistical errors in
      χ2 fitting  then  σi = (Di+Difi)1/2

• To account for systematic errors in a Poisson likelihood fit, one must
incorporate them into the model, as opposed to simply adjusting the
estimated errors.
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Drake et al 2006, SPIE meeting
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only statistical errors

statistical and
calibration errors

• Assume a model
• Run fakeit to simulate a data
set
• Fit in two ways:
1/ using only 1 response
2/ choosing randomly a
response file from a large
number of responses that
reflect uncertainty in calibration

Systematic errors may dominate!
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Final Analysis Steps

• How well are the model parameters constrained
by the data?

• Is this a correct model?
• Is this the only model?
• Do we have definite results?
• What have we learned, discovered?
• How our source compares to the other sources?
• Do we need to obtain a new observation?
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Essential issue = after the best-fit parameters are found estimate the
confidence limits for them. The region of confidence is given by
(Avni 1976):

 χ2
α = χ2

min +Δ(ν,α)

  ν - degrees of freedom
  α - significance
  χ2

min  - minimum

  Δ depends only on the number of
         parameters involved
        nor on goodness of fit

Significance      Number of parameters
    α     1      2        3

 0.68  1.00  2.30   3.50
 0.90  2.71  4.61   6.25
 0.99  6.63  9.21   11.30
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Example of a “well-behaved” statistical
surface in parameter space, viewed as
1/ a multi-dimensional paraboloid (χ2, top),
2/ a multi-dimensional Gaussian  (exp(-χ2

/2) ≈ L, bottom).

CalculatingConfidence Limits means
Exploring  the Parameter Space -
Statistical Surface
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sherpa-39> covariance()
Dataset               = 1
Confidence Method     = covariance
Fitting Method        = levmar
Statistic              = chi2datavar
covariance 1-sigma (68.2689%) bounds:
   Param            Best-Fit  Lower Bound  Upper Bound
   -----            --------  -----------  -----------
   zabs1.nh        0.0960949  -0.00436915   0.00436915
   p1.gamma          1.29086  -0.00981129   0.00981129
   p1.ampl       0.000707365 -6.70421e-06  6.70421e-06

sherpa-40> projection()
Dataset               = 1
Confidence Method     = projection
Fitting Method        = levmar
Statistic              = chi2datavar
projection 1-sigma (68.2689%) bounds:
   Param            Best-Fit  Lower Bound  Upper Bound
   -----            --------  -----------  -----------
   zabs1.nh        0.0960949  -0.00435835   0.00439259
   p1.gamma          1.29086  -0.00981461   0.00983253
   p1.ampl       0.000707365 -6.68862e-06   6.7351e-06

sherpa-48> print get_proj_results()
datasets   = (1,)
methodname = projection
fitname    = levmar
statname   = chi2datavar
sigma      = 1
percent    = 68.2689492137
parnames   = ('zabs1.nh', 'p1.gamma', 'p1.ampl')
parvals    = (0.0960948525609, 1.29085977295, 0.000707365006941)
parmins    = (-0.00435834667074, -0.00981460960484, -6.68861977704e-06)
parmaxes   = (0.0043925901652, 0.00983253275984, 6.73510303179e-06)
nfits      = 46

Confidence Intervals

S
ta

tis
tic

s

parameter

Best fit
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sherpa-61> reg_proj(p1.gamma,zabs1.nh,nloop=[20,20])
sherpa-62> print get_reg_proj()
min     = [ 1.2516146   0.07861824]
max     = [ 1.33010494  0.11357147]
nloop   = [20, 20]
fac     = 4
delv    = None
log     = [False False]
sigma   = (1, 2, 3)
parval0 = 1.29085977295
parval1 = 0.0960948525609
levels  = [ 634.40162888  638.28595426  643.93503803]

Confidence Regions

Best fit

1σ

2σ

3σ
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Not well-behaved Surface

Non-Gaussian Shape
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Why do we talk about statistics?
 

Copyright Jeremy Drake
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Why do we talk about statistics?

Copyright Jeremy Drake
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51Hierarchical Models, Hyperparameters
and Hyperpriors

• Hierarchical  models => models of models
• Hyperparameters => parameters of the

hierarchical models
    Example: an absorbed power law model fit to an X-ray spectrum

  (NH, Γ, Norm)
Flux links all 3 parameters

• Hyperpriors => priors on the hyperparameter, e.g. on flux
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52Flux Uncertainties
• Run simulations:  sample

model parameters from their
distributions, e.g. Gaussians,
or mulit-variate Gaussians

• Calculated flux for each data
set - create flux distribution

• Derive the properties of the
distribution - fit shape, find
mode, mean…

• Is it normal?
• Need to determine a required

confidence level from the
distribution - calculate 68% or
99% bounds
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53Flux uncertainties:  Sherpa Example
• Use Python contributed module

in Sherpa:
contrib_sherpa.flux_dist

• Check thread on the web
# simulate fluxes based on model for a sample size
of 100

flux100=sample_energy_flux(0.5,7.,num=100)
# run 10e4 flux simulations and create a histogram
from the results

hist10000=get_energy_flux_hist(0.5,7.,num=10000)
plot_energy_flux(0.5,7.,recalc=False)

fluxes = flux100[:,0]

numpy.mean(fluxes)

numpy.median(fluxes)

numpy.std(fluxes)

# determine 95% and 50% quantiles using numpy
array sorting

sf=numpy.sort(fluxes)

sf[0.95*len(fluxes)-1]
sf[0.5*len(fluxes)-1]
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How to choose between different models?

Hypothesis Testing
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55Steps in the X-ray Data Analysis:

1/ Obtain the data (observe or archive)

2/ Reduce Data  => standard processing or
reprocessed, extract an image or a spectrum,
include appropriate calibration files

3/ Analysis – fit the data with assumed model
(choice of model - our prior knowledge)

4/ Conclude: which model describe the data
best?

Hypothesis Testing!

5/ Reflect - what did we learn? Do we need
more observations? What type?
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A model M has been fit to dataset D :

● the maximum of the likelihood function Lmax,
● the minimum of the χ2 statistic χ2

min,
● or the mode of the posterior distribution 

 Model Comparison. The determination of which of a
suite of models (e.g., blackbody, power-law, etc.)
best represents the data.

Parameter Estimation. The characterization of the
sampling distribution for each best-fit model
parameter (e.g., blackbody temperature and
normalization), which allows the errors (i.e., standard
deviations) of each parameter to be determined.
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57Steps in Hypothesis Testing
1/ Set up 2 possible exclusive hypotheses - two models:

M0 – null hypothesis – formulated to be rejected

M1 – an alternative hypothesis, research hypothesis

each has associated terminal action

2/ Specify a priori the significance level α

choose a test which:
    - approximates the conditions
    - finds what is needed to obtain the sampling distribution
and the region of rejection, whose area is a fraction of the
total area in the sampling distribution

3/ Run test: reject M0 if the test yields a value of the
statistics whose probability of occurance under M0 is < α

4/ Carry on terminal action
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Two models, M0 and M1 , have been fit to D. M0 , the “simpler” of the two models
(generally speaking, the model with fewer free parameters) is the null hypothesis.

    Frequentists compare these models by:

 constructing a test statistic T from the best-fit statistics of each fit
(e.g., Δχ 2 = χ2

0
 --  χ 2

1);
 determining each sampling distributions for T,  p(T | M0) and p(T | M1);
 determining the significance, or Type I error, the probability of selecting M1 when M0 is
correct:

                      α = ∫Tobs   p(T|M0)

and determing the power, or Type II error, which is related to the probability β of
selecting M0 when M1 is correct:

1-β= ∫Tobs   p(T|M1)

⇒  If α is smaller than a pre-defined threshold (≤ 0.05, or ≤ 10-4, etc., with smaller
thresholds used for more controversial alternative models), then the frequentist
rejects the null hypothesis - M0 model.
⇒ If there are several model comparison tests to choose from, the frequentist uses
the most powerful one!

STEPS AGAIN
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Comparison of distributions p(T | M0) (from which one determines the significance α) and p(T | M1)
(from which one determines the power of the model comparison test 1 – β) (Eadie et al. 1971,
p.217)

α-
significance
1-β – power of
test
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•  The χ2 goodness-of-fit is derived by computing

  This can be computed numerically using, e.g., the GAMMQ routine of
Numerical Recipes.

• A typical criterion for rejecting a model is   α < 0.05   (the “95% criterion”).
However, using this criterion blindly is not recommended!

• A quick’n’dirty approach to building intuition about how well your model fits
the data is to use the reduced χ2, i.e.,

– A “good” fit has χ2 
obs,r ≈1

– If       → 0 the fit is “too good” -- which means (1) the error bars are too
large, (2) χ2 

obs,r  is not sampled from the χ2 distribution, and/or (3) the
data have been fudged.

  The reduced χ2 should never be used in any mathematical computation if
you are using it, you are probably doing something wrong!

Statistical Issues: Goodness-of-Fit
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Standard frequentist model comparison tests include:

The χ2 Goodness-of-Fit (GoF) test:

The Maximum Likelihood Ratio (MLR) test:

where ΔP is the number of additional freely varying model parameters in model M1

The F-test:

where P1 is the total number of thawed parameters in model M1

These are standard tests because they allow estimation of the significance
without time-consuming simulations!
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Bayesian Model Comparison

Bayes’ theorem can also be applied to model comparison:

 p(M) is the prior probability for M;
 p(D) is an ignorable normalization constant; and
 p(D | M) is the average, or global, likelihood:

In other words, it is the (normalized) integral of the posterior distribution over all
parameter space.  Note that this integral may be computed numerically
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Bayesian Model Comparison

To compare two models, a Bayesian computes the odds, or odd ratio:

where B10 is the Bayes factor. When there is no a priori preference for either
model, B10 = 1 of one indicates that each model is equally likely to be
correct, while B10 ≥ 10 may be considered sufficient to accept the alternative
model (although that number should be greater if the alternative model is
controversial).
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Model Comparison Tests:

   Notes and caveats regarding these standard tests:

The GoF test is an “alternative-free” test, as it does not take into
account the alternative model M1.  It is consequently a weak (i.e., not
powerful) model comparison test and should not be used!
Only the version of F-test which generally has the greatest power is
shown above: in principle, one can construct three F statistics out of
Δχ 

2  χ 
2

0
    χ 

2
1

The MLR ratio test is generally the most powerful for detecting
emission and absorption lines in spectra.

    But the most important caveat of all is that…
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The F and MLR tests are often misused by astronomers!

There are two important conditions that must be met so that an estimated
derived value α is actually correct, i.e., so that it is an accurate

approximation of the tail of the sampling distribution (Protassov et al. 2001):

M0 must be nested within M1, i.e., one can obtain M0 by setting the
extra ΔP parameters of M1 to default values, often zero; and
those default values may not be on a parameter space boundary.

The second condition may not be met, e.g., when one is attempting to
detect an emission line, whose default amplitude is zero and whose
minimum amplitude is zero. Protassov et al. recommend Bayesian posterior
predictive probability values as an alternative,

If the conditions for using these tests are not met, then they can still be
used, but the significance must be computed via Monte Carlo simulations.
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Monte Carlo Simulations

• Simulations to test for more complex models, e.g. addition of an
emission line

• Steps:
• Fit the observed data with both models, M0, M1
• Obtain distributions for parameters
• Assume a simpler model M0 for simulations
• Simulate/Sample data from the assumed simpler model
• Fit the simulated data with simple and complex model
• Calculate statistics for each fit
• Build the probability density for assumed comparison

statistics, e.g. LRT and calculate p-value

Example:
Visualization, here accept
more complex model, p-value
1.6%
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67Observations: Chandra Data
and more…

• X-ray Spectra
 typically PHA files with the RMF/ARF calibration files

• X-ray Images
 FITS images, exposure maps, PSF files

• Lightcurves
 FITS tables, ASCII files

• Derived functional description of the source:
• Radial profile
• Temperatures of stars
• Source fluxes

• Concepts of Source and Background data
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Observations: Data I/O in Sherpa

load_data("rprofile_mid.fits[colsRMID,SUR_BRI,SUR_BRI_ERR]")
load_data(“image.fits”)
load_image(“image.fits”, coord=“world”))

• Load functions (PyCrates) to input the data:
data:  load_data, load_pha, load_arrays,

load_ascii
calibration:   load_arf, load_rmf load_multi_arfs,

load_multi_rmfs
background:  load_bkg, load_bkg_arf ,

load_bkg_rmf
2D image: load_image, load_psf
General type: load_table, load_table_model,

load_user_model

• Multiple Datasets - data id

• Filtering of the data
load_data expressions
notice/ignore commands in Sherpa

Help file:
load_data( [id=1], filename, [options] )
load_image( [id=1],
filename|IMAGECrate,[coord="logical"] )

Examples:
load_data("src", "data.txt", ncols=3)

Default data id =1
load_data(2, “data2.dat”, ncols=3)

Examples:
notice(0.3,8)
notice2d("circle(275,275,50)")
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69A Simple Problem
Fit Chandra 2D Image data  in Sherpa

using Command Line Interface in Python

• Read the data

• Choose statistics and optimization method

• Define the model

• Minimize to find the best fit parameters for the model

• Evaluate the best fit - display model, residuals, calculate
uncertainties
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70A Simple Problem
List of Sherpa Commands

Read  Image data 
and Display in ds9

Set Statistics and
Optimization Method

Define Model and Set
Model parameters

Fit, Display
Get Confidence Range
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71A Simple Problem
List of Sherpa Commands
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72List of Sherpa Commands Command Line View
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Setup Environment

Import Sherpa
and Chips

Set the System

Define directories
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Loops

Model 
Parameters



1st School on Multiwavelegth Astronomy
Paris, July, 2009

Statistics,
Aneta Siemiginowska

75A Complex Example
Fit Chandra and HST Spectra with

Python script

• Setup the environment
• Define model functions
• Run script and save results in nice format.
• Evaluate results - do plots, check

uncertainties, derive data and do analysis of
the derived data.
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Setup 

Optical spectra

X-ray spectra

Units
Conversion
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Fit Results
X-ray data with RMF/ARF and Optical Spectra in ASCII

Log ν

Lo
g 
νF

ν

Quasar SED

Wavelength

Optical

X-ray

Energy

Fl
ux

Optical

X-ray
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Learn more on Sherpa Web

Pages

Freeman, P., Doe, S., & Siemiginowska, A.\ 2001, SPIE 4477, 76
Doe, S., et al. 2007,  Astronomical Data Analysis Software and Systems XVI, 376, 543
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Summary

• Motivation: why do we need statistics?
• Probabilities/Distributions
• Poisson Likelihood
• Parameter Estimation
• Statistical Issues
• Statistical Tests
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Conclusions

Statistics is the main tool for any astronomer who
need to do data analysis and need to decide about the
physics presented in the observations.

References:

Peter Freeman's Lectures from the Past X-ray Astronomy School

“Practical Statistics for Astronomers”, Wall & Jenkins, 2003
 Cambridge University Press

Eadie et al 1976, “Statistical Methods in Experimental Physics”
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 General statistics:

Babu, G. J., Feigelson, E. D. 1996, Astrostatistics (London: Chapman & Hall) 
Eadie, W. T., Drijard, D., James, F. E.,Roos, M., & Sadoulet, B. 1971, Statistical Methods in Experimental Physics
(Amsterdam: North-Holland) 
Press, W. H., Teukolsky, S. A., Vetterling, W. T.,& Flannery, B. P. 1992, Numerical Recipes (Cambridge: Cambridge
Univ. Press)

 Introduction to Bayesian Statistics:
Loredo, T. J. 1992, in Statistical Challenges in Modern Astronomy,ed. E. Feigelson & G. Babu (New York: Springer-
Verlag), 275

 Modified ℒand χ2 statistics:

Cash, W. 1979, ApJ 228, 939\item Churazov, E., et al. 1996, ApJ 471, 673
Gehrels, N. 1986, ApJ 303, 336
 Kearns, K., Primini, F., & Alexander, D. 1995, in Astronomical Data Analysis Software and Systems IV,eds. R. A. Shaw,
H. E. Payne, & J. J. E. Hayes (San Francisco: ASP), 331

 Issues in Fitting:
Freeman, P. E., et al. 1999, ApJ 524, 753 (and references therein) 

 Sherpa and XSPEC:
Freeman, P. E., Doe, S., & Siemiginowska, A. 2001, astro-ph/0108426
http://asc.harvard.edu/ciao/download/doc/sherpa_html_manual/index.html
Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V, eds. G. H. Jacoby & J. Barnes (San
Francisco: ASP), 17
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/manual.html
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Example

From a paper by Martinez-
Sansigre et al published in
Aug 4, 2005 issue of Nature

q – quasar fraction

       Type-1 quasars         N1
q=                              =
      Type-1 + Type-2    N1+N2  

<N1> - number of Type-1 qso
<N2> - number of Type-2 qso

1/ take Poisson likelihood with the mean
<N2> = (1-q)<N1>/q
2/ evaluate likelihood at each q and N1
3/ integrate P(N1|q)P(N1) over N1

Posterior Probability distribution for the
quasar fractionWhat is the fraction of the

unobscured quasars?

Use IR Spitzer observations

p(q|data,{type-1 qso}) = p(data|q,{type-1 qso})

Include
only 5 qso

5+6 qso

Torus
Models
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Integer counts spectrum sampled from a constant amplitude model with mean µ = 60 counts, and fit with
a parabolic model.

Example:
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Example of a two-dimensional integer counts spectrum.  Top Left: Chandra ACIS-S data of X-ray cluster
MS 2137.3-2353, with ds9 source regions superimposed.
Top Right: Best-fit of a two-dimensional beta model to the filtered data.
Bottom Left: Residuals (in units of σ ) of the best fit.
Bottom Right: The applied filter; the data within the ovals were excluded from the fit.

Example2
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85Probability
Numerical formalization of our
degree of belief.

Number of favorable events

   Total number of  events

Example 2:
Use data to calculate probability, thus
the probability of a cloudy observing
run:

number of cloudy nights last year    
365 days

Issues:
• limited data
• not all nights are equally likely to be
cloudy

Laplace principle of indifference:

All events have equal probability

Example 1:
1/6 is the probability of throwing a 6 with 1
roll of the dice BUT the dice can be biased!
=>  need to calculate the probability of each
face

=>
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86Conditionality and Independence
 A and B events are independent if the probability of one
is unaffected by what we know about the other:

prob(A and B)=prob(A)prob(B)

If the probability of A depends on what we know about B 
A given B    =>  conditional probability

                           prob(A and B)
                  prob(A|B)=

    prob(B)

If A and B are independent => prob(A|B)=prob(A)

If there are several possibilities for event B (B1, B2....)
   prob(A) = ∑prob(A|Bi) prob(Bi)

A – parameter of interest
Bi – not of interest, instrumental parameters, background
prob(Bi) - if known we can sum (or integrate) - Marginalize
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Bayes' Theorem

Bayes' Theorem is derived by equating:
prob(A and B) = prob (B and A)

                 prob (A|B) prob(B)
         prob(B|A) =

                        prob(A)

Gives the Rule for induction:
   the data, the event A,  are succeeding B, our knowledge preceeding
   the experiment.

 prob(B) – prior probability which will be modified by experience
 prob(A|B) – likelihood
 prob(B|A) – posterior probability – the knowledge after the 

data have been analyzed
 prob(A) – normalization
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88Example
A box with colored balls:
          what is the content of the box?

   prob(content of the box | data) ∝ prob(data | content of the box) 

Experiment:
 N red balls

  M white balls
  N+M = 10 total, known
 Draw 5 times (putting back) (T) and
 get 3 red balls (R) 
 How many red balls are in the box?

 Model (our hypothesis) =>                       N
prob(R) =

      N+M

  Likelihood = (   ) prob(R)R prob(M)T-RT

R

T=5
T=50


