
X-ray Spectra Part I: Loading, Visualizing, & Grouping Data

Michael Nowak, mnowak@space.mit.edu

July 2, 2010

Starting up ISIS

This exercise presumes that you’ve downloaded and installed the.isisrc files located at:
http://space.mit.edu/home/mnowak/isis vs xspec/download.html

If these files are placed in your home directory, and the path variable in the main.isisrc file is edited to
point to your home directory, then these will automaticallybe loaded when you start ISIS. Further you need
to have downloaded the data from the web page:

http://space.mit.edu/home/mnowak/isis vs xspec/data.tar.gz
These files need to be placed in whatever directory where you will be running ISIS.

1. Start up ISIS, and get used to treating it like a programming environment, and not simply a spectral
analysis tool. To begin with, try defining some variables, doing simple functions, and plotting these. For
example:

variable a = [0:6:0.01]; % 0 -> 6 in 0.01 steps
variable b = aˆ2;
plot(a,b);
variable c = sin(b+0.5); % Note that scalars & arrays mix natu rally
plot(a,c);

There’s a few data types that you need to be aware of:

variable a = 1; % Integer
variable b = 1.5; % Float
variable c = PI; % There are a few standard numbers
variable d = Double_Type[10]; % Double precision array of ze ros
variable e = [0:18:2]; % Integer type array stepping by 2
variable f = d+e; % f is now a Double_Type stepping by 2
print(f[5]); % 10.0
variable g={"pizza",PI,NULL}; % Lists are heterogeneous c ontainers

% used a lot in the plotting functions
print(g[1]); % 3.141592653589793 - arrays index from 0
print(g[2]); % NULL - used as "default" for plot ranges

Note that in the above, thevariable command is only needed in scripts, butnot on the command line.
From here on out, we drop thevariable , but in the script version of this exercise, they are included.
All ISIS commands are functions that can be added to scripts.Many functions exist to return information
about the data that you’ve loaded. Furthermore, the data themselves can be loaded to variables.

1

Loading the Data and Looking at Related Files

2. Load the PCA data, and look at the list of files that just got added. Load the pca.pha file, then use the list
functions (list data , list arf , list rmf) to see what you’ve got. The load data command is:

pca = load_data("pca.pha");
print(pca); % Note that this agrees with the # seen in list dat a

3. Now take a look at the data “by hand” by loading the data in a “structure variable” using theget data counts
command. Print out the pieces of this, and compare this to thereturns of thelist * functions.

variable cts = get_data_counts(pca); % This is a structure v ariable

print(cts); % A list of its contents
print(sum(cts.value)); % The total # of counts
print(min(cts.bin_lo)); % Minimum wavelength in the data
print(max(cts.bin_hi)); % Maximum wavelength in the data
print(min(_A(cts.bin_hi))); % Minimum energy in the data
print(max(_A(cts.bin_lo))); % Maximum energy in the data

4. Take a look at the response that got loaded by defining a delta function model and evaluating it. We’ll
talk more about fit functions in the next set of lectures. Fit functions are loaded viafit fun , and their
parameters can be edited viaset par or edit par . Try both. Evaluate the model at 6 keV, and plot it
with theplot model command.

fit_fun("delta(1)"); % The (#) allows multiple instances t o be used
set_par(1,1.);
set_par(2,_A(6)); % delta takes Angstroms: convert from ke V with _A()
() = eval_counts; % returns a success/fail flag caught by the () =
plot_model(pca);

Repeat the above for several different energies: 10, 15, 20,60 keV. Trying changing parameters with
edit par .

Plotting the Data

5. This is where we’ll start to heavily use the functions fromthe .isisrc files. Choose logarithmic axes,
and then plot the counts, with & without the background, and then plot both on the same plot:

xlog;
ylog;
plot_counts(pca;mcol=0); % Don’t plot the model defined ab ove!
plot_counts(pca;bkg=1,mcol=0);
plot_counts({pca,pca}; mcol={0,0}, bkg={1,0});

2

There are several ways of setting plot options. The above used theS-lang feature of “qualifiers”. These
are named variables passed after a semi-colon (;). If the qualifier is defined in the function, it will affect the
function behavior. Often a qualifier will have a defined default value. (If the name you pass is not defined,
it is simply ignored. The order of the passed qualifiers does not matter.) See the options you have by typing
plot counts without any arguments, then play around with it.

plot_counts({pca,pca}; mcol={0,0},dcol={4,8},decol={ 5,7},bkg={1,0});

To learn what colors and symbol values you have, type thepg info function, which is also defined in the
.isisrc startup files. (I.e., that’s not an intrinsic function in ISIS.)

Note that for the purposes of these plotting functions, mostarguments are passed as lists. using the curly
brackets,{}, to denote a list. This allow us to mix data types, e.g.,NULLwith integers.NULL is used for
“auto-scale” the plot axis:

plot_counts({pca,pca}; mcol={0,0},dcol={4,8},decol={ 5,7},bkg={1,0},
xrange={NULL,10},yrange={3,NULL});

xrange(NULL,NULL); % When called as a * function * , use () * not * {}
yrange(1,300); % xrange() choices are respected by .isisrc -defined

% plot functions, yrange() only works for ISIS
% intrinsic plots: plot, hplot, plot_model, ...

Instead of qualifiers, we can set plot options via a structurevariable. A structure for doing this,popt has
already been globally defined by the script.Anystructure variable with the proper fields can be used, which
allows you to define multiple ones for different sets of plots.

popt.dcol={4,8};
popt.decol={5,7};
popt.bkg={1,0};
popt.mcol={0,0};
plot_counts({pca,pca},popt);

You can also mix the structure variable with qualifiers. Qualifiers will override the values in the structure.
(Structures are more convenient when setting lots of options, but sometimes you want to change just a couple
of those.)

plot_counts({pca,pca},popt;dcol={5,7});

Now try the above with theplot data function instead, and note the differences.

plot_data({pca,pca},popt);

Loading a Second Data Set

Let’s load a second data set, which in this case will be the HEXTE data that was taken simultaneously with
the PCA data already loaded.

hxt = load_data("hxt.pha");

3

6. Repeat the same exercises as above, specifically use thelist data , list rmf , andlist arf func-
tions to see what you’ve loaded. How do the numbers compare tothe PCA data? Note that the HEXTE
datahave a separate arf and rmf file, unlike the PCA data which onlyhas a combined arf/rmf.Use the
get data counts function to look at the total counts, the minimum and maximumenergy bins in the
data, etc.

7. The delta function fit function still remains defined from before. Now choose an energy value appropriate
to the HEXTE data:

set_par(2,_A(30)); % 30 keV
() = eval_counts;
plot_model(2); % This almost all background, and not the res ponse

Since the plot above is mostly comprised of the background data, use the.isisrc defined function
plot fit model instead. This latter plot function subtracts the background from the fit model.

plot_fit_model(2);

8. Since the HEXTE has a separate arf file, let’s take a look at that by itself:

variable arf = get_arf(1); % The HEXTE arf is #1, since PCA has no arf
hplot(_A(arf.bin_hi),_A(arf.bin_lo),reverse(arf.val ue));

9. As for the PCA data, plot the counts, with & without the background, and then plot both together on the
same plot. Do this for both the counts per bin (plot counts) and the counts per unit energy per second
(plot data).

plot_counts({hxt,hxt},popt);
plot_data({hxt,hxt},popt);

10. Let’s put the PCA and HEXTE data together on the same plot.If you are using thepopt structure
variable, remember that although we have it set up for two data sets, one is set to have no background
subtraction.

popt.bkg={0,0};
plot_data({pca,hxt},popt);

‘Flux Corrected’ Data, Grouping, and Noticing

In the next set of lectures we will discuss the extent to whichwe can trust our ability to “undo” the effects
of the response and plot the data in terms of physical units such as flux. The short answer is:this can be
very misleading, so is dangerous to do.In XSPEC, this can only be done in reference to a fitted model,
which only makes itmore misleading, not less. In ISIS, we only do it in reference to the detector responses.
(This will be explained more in the next lecture.) Still, this can be a helpful thing to do, if approached with
caution, so we will slowly move forward and try it.

11. Plot the data in a “flux corrected” manner using theplot unfold function. (Yes, there is some
inconsistency between the procedure and the name of the function!)

plot_unfold({pca,hxt},popt);

4

To what extent do the data agree or disagree? Where are the twomost different from each other? Which do
you trust more? Why? Here is where some knowledge of how the detectors work can come in handy.

You can try playing around with the data plots a little more byusing various different combinations of units.
Thefancy plot unit function allows you to choose a variety of X- and Y-units, e.g.,

fancy_plot_unit("hz","ergs"); % Case insensitive

Also, the plot unfold function will make use of thepower qualifier or structure field. Choosing
power=1 means being proportional to photons/area/sec/(unit x), and then power=0 means dividing by an-
other power of x, power=2–4 means multiplying by additionalpowers of x. This allows for plotting things
like Fλ, λFλ, νFν , etc. Play around with that a little bit, and notice the extent to which you see deviations
between PCA and HEXTE become more or less prominent.

12. One of the useful features of the ‘flux corrected’ data is that at least this gives us some more idea
where we can trust the spectra. (Although this is not a substitute for reading the observatory guides for the
detectors!) Here clearly there are issues at both the low andhigh energy ends of both detectors. Let’s try
cleaning this up a bit by restricting the noticed energy ranges. Before we do that, however, we will first
group the data to improve the signal-to-noise in each channel. We accomplish these tasks with thegroup
andnotice values functions.Note that these functions need to be told what units you are referring to
when making selections.

group(pca;min_sn=5,bounds=3.,unit="kev");
group(hxt;min_sn=5,bounds=18.,unit="kev");

notice_values(pca,3,22;unit="kev");
notice_values(hxt,18,200;unit="kev");

Now try replotting the data. Play around with different choices on the signal-to-noise criteria, and see how
that affects the plots. Also notice thatnotice values allows you to slice out specific regions. For
example:

notice_values(pca,3,5,8,22;unit="kev");

will ignore the broad iron line region between 5–8 keV in the PCA data.

One final note: Any time you redo thegroup function, you also have to redo thenotice values
function. The notice range isnot preserved after the data bins have been redefined.

Data Fluxes - Part I

In X-ray spectroscopy, fluxes are most reliably definedin reference to a specific model, and then only over
energy ranges actually detected by the satellite in question. This might seem like an obvious statement,
but it’s not. In the literature, you will often find fluxes quoted well outside of the bandpass of the detector.
Furthermore, you will often find fluxescorrected for the effects of interstellar absorption. Given that ab-
sorption is anexponential process, that depends upon the chosen extinction model and atomic cross sections
and elemental abundances assumed, this can be a very, very model-dependent quantity. Again, if you are
going to attempt such a thing, it has to be in reference to a specific model.

13. Since we have yet to define and fit a model, we can make a roughcalculation of the absorbed flux
essentially using the same procedures applied internally in theplot unfold function. Another function

5

defined by the.isisrc files isdata flux . This can return values to variables, or print them to a screen.
Try it both ways:

(p,pe,e,ee) = data_flux(pca,3,8;unit="kev"); % PCA Flux
data_flux(hxt,20,100;unit="kev",print); % HEXTE Flux

Also try it over the same energy range for PCA and HEXTE, and notice the differences:

data_flux(pca,20,30;unit="kev",print); % PCA Flux
data_flux(hxt,20,30;unit="kev",print); % HEXTE Flux

Which of these to trust, if either, will be discussed more in the next lecture. We will then also discuss
functions that obtain their estimates of the flux from a fittedmodel.

6

