Fundamentals of radio astronomy

James Miller-Jones (NRAO Charlottesville/Curtin University)

ITN 215212: Black Hole Universe

Many slides taken from NRAO Synthesis Imaging Workshop (<u>http://www.aoc.nrao.edu/events/synthesis/2010/</u>)

and the radio astronomy course

of J. Condon and S. Ransom

(http://www.cv.nrao.edu/course/astr534/ERA.shtml)

Atacama Large Millimeter/submillimeter Array NRAO

Expanded Very Large Array

Robert C. Byrd Green Bank Telescope

Very Long Baseline Array

What is radio astronomy?

- The study of radio waves originating from outside the Earth
- Wavelength range 10 MHz 1 THz
- Long wavelengths, low frequencies, low photon energies
 - Low-energy transitions (21cm line)
 - Cold astronomical sources
 - Stimulated emission (masers)
 - Long-lived synchrotron emission
- Sources typically powered by gravity rather than nuclear fusion
 - Radio galaxies
 - Supernovae
 - Pulsars
 - X-ray binaries

What is radio astronomy?

- Telescope resolution $\theta = 1.02 \lambda/D$
 - Requires huge dishes for angular resolution
- Coherent (phase preserving) amplifiers practical
 - Quantum noise proportional to frequency $T = hv/k_B$
- Precision telescopes can be built $\sigma < \lambda/16$
- Interferometers are therefore practical: $D \le 10^4$ km

4

Why radio astronomy?

- Atmosphere absorbs most of the EM spectrum
 - Only optical and radio bands accessible to ground-based instruments
- Rayleigh scattering by atmospheric dust prevents daytime optical
- Radio opacity from water vapour line, hydrosols, molecular oxygen
 - High, dry sites best at high frequencies
- Stars undetectably faint as thermal radio sources
 - Non-thermal radiation
 - Cold gas emission
 - CMB

JRA

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{\frac{h\nu}{k_{B}T}} - 1} = \frac{2k_{B}T\nu^{2}}{c^{2}} = 0.3\mu Jy$$

A tour of the radio Universe

- Synchrotron radiation
 - Energetic charged particles accelerating along magnetic field lines (non-thermal)

- Thermal emission
 - Blackbody radiation from cool (T~3-30K) objects
 - Bremsstrahlung "free-free" radiation: charged particles interacting in a plasma at T; e⁻ accelerated by ion

- mass of ionized gas
- optical depth
- density of electrons in plasma
- rate of ionizing photons

- How to distinguish continuum mechanisms?
- Look at the spectrum

- Spectral line emission (discrete transitions of atoms and molecules) ٠
 - Spin-flip 21-cm line of HI
 - Recombination lines
 - Molecular rotational/vibrational modes

What can we

The Sun

- Brightest discrete radio source
- Atmospheric dust doesn't scatter radio waves

NRAO

Image courtesy of NRAO/AUI

The planets

- Thermal emitters
- No reflected solar radiation detected
- Jupiter is a non-thermal emitter (B field traps electrons)
- Also active experiments: radar

Images courtesy of NRAO/AUI

Stars

- Coronal loop resolved in the Algol system
 - Tidally-locked system, rapid rotation drives magnetic dynamo

Credit: Peterson, Mutel, Guedel, Goss (2010, Nature)

Black holes and neutron stars

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010 14

Center of our Galaxy

Credits: Lang, Morris, Roberts, Yusef-Zadeh, Goss, Zhao

Radio Spectral Lines: Gas in galaxies

Jet Energy via Radio Bubbles in Hot Cluster Gas

1.4 GHz VLA contours over Chandra X-ray image (left) and optical (right) 6 X 10^{61} ergs ~ 3 X 10^{7} solar masses X c² (McNamara et al. 2005, Nature, 433, 45)

Resolution and Surface-brightness Sensitivity

The Cosmic Microwave Background

• 2.73 K radiation from z~1100

NRAC

Angular power spectrum of brightness fluctuations constrains cosmological parameters

Definitions

 I_v (or B_v) = Surface Brightness : erg/s/cm²/Hz/sr (= intensity)

 $S_{\nu} = \text{Flux density: erg/s/cm}^{2}/\text{Hz} \int I_{\nu} \Delta \Omega$ $S = \text{Flux: erg/s/cm}^{2} \int I_{\nu} \Delta \Omega \Delta \nu$ $P = \text{Power received : erg/s} \int I_{\nu} \Delta \Omega \Delta \nu \Delta A_{\text{tel}}$ $E = \text{Energy: erg} \int I_{\nu} \Delta \Omega \Delta \nu \Delta A_{\text{tel}} \Delta t$

Radio astronomy: instrumentation

- Antennas convert electromagnetic radiation into electrical currents in conductors
- Average collecting area of any lossless antenna

$$\left\langle A_{e}\right\rangle = \frac{\lambda^{2}}{4\pi}$$

- Long wavelength: dipoles sufficient
- Short wavelength: use reflectors to collect and focus power from a large area onto a single feed
 - Parabola focuses a plane wave to a single focal point

Types of antennas

- Wire antennas
 - Dipole
 - Yagi
 - Helix
 - Small arrays of the above

 $(\lambda > 1m)$

- Reflector antennas $(\lambda < 1m)$
- Hybrid antennas
 - Wire reflectors $(\lambda \approx 1m)$
 - Reflectors with dipole feeds

Fundamental antenna equations

Aperture-Beam Fourier Transform Relationship

 Aperture field distribution and far-field voltage pattern form FT relation

$$f(l) = \int_{aperture} g(u) e^{-2\pi i l u} du$$

- $u = x/\lambda$
- $I=sin \theta$
- Uniformly-illuminated aperture gives sinc function response

$$P(\theta) = \operatorname{sinc}^2\left(\frac{\theta D}{\lambda}\right)$$

-D/2

• $\theta_{HPBW} \alpha \lambda/D$

Antenna efficiency

On axis response: $A_0 = \eta A$ Efficiency: $\eta = \eta_{sf} \cdot \eta_{bl} \cdot \eta_s \cdot \eta_t \cdot \eta_{misc}$

$$\begin{split} \eta_{sf} &= \text{Reflector surface efficiency} \\ \text{Due to imperfections in reflector surface} \\ \eta_{sf} &= \exp[-(4\pi\sigma/\lambda)^2] \quad \text{e.g., } \sigma &= \lambda/16 \text{ , } \eta_{sf} &= 0.5 \end{split}$$

 η_{bl} = Blockage efficiency Caused by subreflector and its support structure

- η_s = Feed spillover efficiency Fraction of power radiated by feed intercepted by subreflector
- η_t = Feed illumination efficiency Outer parts of reflector illuminated at lower level than inner part

 η_{misc} = Reflector diffraction, feed position phase errors, feed match and loss

Interferometry

- Largest fully-steerable dishes have D~100m
 - $-\lambda/D \le 10^{-4}$ at cm wavelengths
 - Sub-arcsecond resolution impossible
 - Confusion limits sensitivity
 - Collecting area limited to $\pi D^2/4$
- Tracking accuracy limited to σ ~1"
 - Gravitational deformation
 - Differential heating
 - Wind torques
 - Must keep $\sigma < \lambda/10D$ for accurate imaging/photometry
- Interferometers consisting of multiple small dishes mitigate these problems

Interferometry

- Interferometry = Aperture Synthesis
 - Combine signals from multiple small apertures
 - Technique developed in the 1950s in England and Australia.
 - Martin Ryle (University of Cambridge) earned a Nobel Prize for his contributions.
- Basic operation:

Correlation = multiply and average separate voltage outputs

Interferometry

- We seek a relation between the characteristics of the product of the voltages from two separated antennas and the distribution of the brightness of the originating source emission.
- To establish the basic relations, consider first the simplest interferometer:
 - Fixed in space no rotation or motion
 - Quasi-monochromatic
 - Single frequency throughout no frequency conversions
 - Single polarization (say, RCP).
 - No propagation distortions (no ionosphere, atmosphere ...)
 - Idealized electronics (perfectly linear, perfectly uniform in frequency and direction, perfectly identical for both elements, no added noise, ...)

The two-element interferometer

The two-element interferometer

$$R = \left\langle V_1 V_2 \right\rangle = \frac{V^2}{2} \cos\left(\omega \tau_g\right)$$

 Sinusoidal variation with changing source direction: fringes

$$\phi = \omega \tau_g = \frac{\omega b \cos \theta}{c}$$
$$\frac{d\phi}{d\theta} = 2\pi \left(\frac{b \sin \theta}{\lambda}\right)$$

- Fringe period $\lambda/b\sin\theta$
- Phase measures source position (for large *b*)

The two-element interferometer

$$R = \left\langle V_1 V_2 \right\rangle = \frac{V^2}{2} \cos\left(\omega \tau_g\right)$$

 Sensitivity to a single Fourier component of sky brightness, of period λ/bsinθ

- Antennas are directional
- Multiply correlator output by antenna response (primary beam)

Adding more elements

- Treat as N(N-1)/2 independent two-element interferometers
- Average responses over all pairs
- Synthesized beam approaches a Gaussian
- For unchanging sources, move antennas to make extra measurements

Extended sources

- Point source response of our cosine correlator: $R = \langle V_1 V_2 \rangle = \frac{V^2}{2} \cos(\omega \tau_g)$ $\frac{V^2}{2} \propto S_v (A_1 A_2)^{1/2}$
- Treat extended sources as the sum of individual point sources
 - Sum responses of each antenna over entire sky, multiply, then average $R_c = \left\langle \int V_1 d\Omega_1 \int V_2 d\Omega_2 \right\rangle$
- If emission is spatially incoherent $\langle \varepsilon_{\nu}(\mathbf{R}_{1})\varepsilon_{\nu}^{*}(\mathbf{R}_{2})\rangle = 0$ for $\mathbf{R}_{1} \neq \mathbf{R}_{2}$
- Then we can exchange the integrals and the time averaging

$$R_{c} = \int I_{v}(\mathbf{s}) \cos\left(2\pi v \,\frac{\mathbf{b.s}}{c}\right) d\Omega$$

Odd and even brightness distributions

- Response of our cosine correlator: $R_c = \int I_v(\mathbf{s}) \cos\left(2\pi v \frac{\mathbf{b.s}}{c}\right) d\Omega$
- This is only sensitive to the even (inversion-symmetric) part of the source brightness distribution $I = I_E + I_O$
- Add a second correlator following a 90° phase shift to the output of one antenna

$$R_{s} = \langle V_{1}V_{2} \rangle = \frac{V^{2}}{2} \sin(\omega \tau_{g})$$
$$R_{s} = \int I_{v}(\mathbf{s}) \sin\left(2\pi v \frac{\mathbf{b} \cdot \mathbf{s}}{c}\right) d\Omega$$

Complex correlators

- Define complex visibility $V = R_c iR_s = Ae^{i\phi}$
- Thus response to extended source is

$$V_{\nu} = \int I_{\nu}(\mathbf{s}) \exp\left(-2\pi i \frac{\mathbf{b.s}}{\lambda}\right) d\Omega$$

- Under certain circumstances, this is a Fourier transform, giving us a well established way to recover *I*(s) from *V*
 - 1) Confine measurements to a plane
 - 2) Limit radiation to a small patch of sky
- Use an interferometer to measure the spatial coherence function V_{ν} and invert to measure the sky brightness distribution

 $A = (R_c^2 + R_s^2)^{1/2}$ $\phi = tan^{-1}(R_s/R_c)$

Digression: co-ordinate systems

- Baseline **b** measured in wavelengths: the (*u*,*v*,*w*) co-ordinate system
 - w points along reference direction s_o
 - (u, v) point east and north in plane normal to w-axis
 - (u, v, w) are the components of **b**/ λ along these directions

- *I,m,n* are direction cosines

$$- n = \cos \theta = (1 - l^2 - m^2)^{1/2}$$

$$= \int I_{\nu}(\mathbf{s}) \exp\left(-2\pi i \frac{\mathbf{b} \cdot \mathbf{s}}{\lambda}\right) d\Omega$$

$$(east)$$

$$V_{v}(u,v,w) = \iint \frac{I_{v}(l,m)}{\sqrt{1-l^{2}-m^{2}}} \exp\left[-2\pi i (ul+vm+wn)\right] dldm$$

 V_{ν}

v (north)

 $d\Omega = \frac{dldm}{\sqrt{1 - l^2 - m^2}}$

Measurements confined to a plane

- All baselines **b** lie in a plane, so $\mathbf{b} = \mathbf{r_1} \cdot \mathbf{r_2} = \lambda(u, v, 0)$
- Components of **s** are then $(l, m, \sqrt{1-l^2-m^2})$

$$V_{v}(u, v, w \equiv 0) = \iint I_{v}(l, m) \frac{e^{-2\pi i(ul+vm)}}{\sqrt{1-l^{2}-m^{2}}} dl dm$$

- This is a Fourier-transform relationship between V_{ν} and I_{ν} , which we know how to invert
- Earth-rotation synthesis (**s**_o is Earth's rotation axis): $\sqrt{1-l^2-m^2} = \cos\theta = \sec\delta$
 - E-W interferometers
 - ATCA, WSRT
- VLA snapshots

All sources in a small region of sky

- Radiation from a small part of celestial sphere: $\mathbf{s} = \mathbf{s}_o + \boldsymbol{\sigma}$
- $n = \cos \theta = 1 (\theta^2/2)$

$$V_{v}(u,v,w) = e^{-2\pi i w} \iint \frac{I_{v}(l,m)}{\sqrt{1-l^{2}-m^{2}}} \exp\left[-2\pi i \left(ul + vm + w\theta^{2}/2\right)\right] dldm$$

• If $w\theta^2 \ll 1$, i.e. $\theta \sim (\lambda/b)^{1/2}$ then we can ignore last term in brackets

$$V_{\nu}'(u,v,w) = e^{-2\pi i w} \iint \frac{I_{\nu}(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+\nu m)} dl dm$$

• Let
$$V_{\nu}(u,v,w) = e^{2\pi i w} V_{\nu}'(u,v,w)$$

 $V_{\nu}(u,v) = \iint \frac{I_{\nu}(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+vm)} dl dm$

- Again, we have recovered a Fourier transform relation
- Here the *endpoints* of the vectors **s** lie in a plane
- Break up larger fields into multiple facets each satisfying $w\theta^2 << 1$

All sources in a small region of sky

• This assumption is valid since antennas are *directional*

$$V_{\nu}(u,v) = \iint A_{\nu}(l,m)I_{\nu}(l,m)e^{-2\pi i(ul+\nu m)}dldm$$

- Primary beam of interferometer elements A_v gives sensitivity as a function of direction
- Falls rapidly to 0 away from pointing centre so
- Holds where field of view is not too large
 - centimetre-wavelength interferometers
 - EVLA
 - MERLIN
 - VLBA
 - EVN
 - GMRT

Visibility functions

- Brightness and Visibility are Fourier pairs.
- Some simple and illustrative examples make use of 'delta functions' – sources of infinitely small extent, but finite total flux.

Visibility functions

- Top row: 1-dimensional even brightness distributions.
- Bottom row: The corresponding real, even, visibility functions.

Inverting the Fourier transform

• Fourier transform relation between measured visibilities and sky brightness $V_{\nu}(u,v) = \iint \frac{I_{\nu}(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i(ul+vm)} dl dm$

$$\frac{I_{\nu}(l,m)}{\sqrt{1-l^2-m^2}} = \iint V_{\nu}(u,v)e^{-2\pi i(ul+vm)}dudv$$

- This assumes complete sampling of the (u, v) plane
 - Introduce sampling function S(u,v) $\frac{I_v^D(l,m)}{\sqrt{1-l^2-m^2}} = \iint V_v(u,v)S_v(u,v)e^{-2\pi i(ul+vm)}dudv$
- Must deconvolve to recover I_{ν} : $I_{\nu}^{D} = I_{\nu} * B$
- See Katherine Blundell's lecture for details

۲

Seems simple?

- We have discovered a beautiful, invertible relation between the visibility measured by an interferometer and the sky brightness
- BUT:
- Between the source and the correlator lie:
 - Atmosphere
 - Man-made interference (RFI)
 - Instrumentation
- The visibility function we measure is not the true visibility function
- Therefore we rely on:
 - Editing: remove corrupted visibilities
 - Calibration: remove the effects of the atmosphere and instrumentation

$$V_{ij}^{obs} = \left(G_{ij}\right)V_{ij}^{true} = \left(G_{i}G_{j}^{*}\right)V_{ij}^{true}$$

What about bandwidth?

- Practical instruments are not monochromatic
- Assume:
 - constant source brightness
 - constant interferometer response

over the finite bandwidth, then:

$$V_{\nu} = \int \left[\left(\Delta \nu \right)^{-1} \int_{\nu_c - \Delta \nu/2}^{\nu_c + \Delta \nu/2} I_{\nu}(\mathbf{s}) \exp \left(-2\pi i \nu \tau_g \right) d\nu \right] d\Omega$$

• The integral of a rectangle function is a sinc function:

$$V_{v} = \int I_{v}(\mathbf{s})\operatorname{sinc}(\Delta v \tau_{g}) \exp(-2\pi i v_{c} \tau_{g}) d\Omega$$

G

- Fringe amplitude is reduced by a sinc function envelope
- Attenuation is small for $\Delta v \tau_g << 1$, i.e. $\Delta v \Delta \theta << \theta_s v$

 Λv

 v_0

ν

What about bandwidth?

- For a square bandpass, the bandwidth attenuation reaches a null at ۲ an angle equal to the fringe separation divided by the fractional bandwidth: $\Delta v / v_0$.
- Depends only on baseline and bandwidth, not frequency ۲

Delay tracking

- Fringe amplitude reduced by sinc function envelope
- Eliminate the attenuation in any one direction $\mathbf{s_o}$ by adding extra delay $\tau_0 = \tau_g$
- Shifts the fringe attenuation function across by $\sin \theta = c\tau_0/b$ to centre on source of interest
- As Earth rotates, adjust τ₀ continuously so | τ₀ - τ_a| < (Δν)⁻¹
- $\Delta v \Delta \theta \ll \theta_s v$
- Away from this, bandwidth smearing: radial broadening
 - Convolve brightness with rectangle $\Delta v \Delta \theta / v$

Field of view

- Bandwidth smearing
 - Field of view limited by bandwidth smearing to $\Delta\theta << \theta_s \nu / \Delta \nu$
 - Split bandwidth into many narrow channels to widen FOV
- Time smearing
 - Earth rotation should not move source by 1 synthesized beam in correlator averaging time
 - Tangential broadening
 - $\Delta\theta \ll P\theta_s/2\pi\Delta t$ where
 - P=86164s (sidereal day)

Interferometer Fringe Separation λ/b Primary Beam Half Power

Source

 λ/D

θ

What about polarization?

- All the above was derived for a scalar electric field (single polarization)
- Electromagnetic radiation is a vector phenomenon:
 - EM waves are intrinsically polarized
 - monochromatic waves are fully polarized
- Polarization state of radiation can tell us about:
 - the origin of the radiation
 - intrinsic polarization, orientation of generating B-field
 - the medium through which it traverses
 - propagation and scattering effects
 - unfortunately, also about the purity of our optics
 - you may be forced to observe polarization even if you do not want to!

The Polarization Ellipse

Е

- From Maxwell's equations E•B=0 (E and B perpendicular)
 - By convention, we consider the time behavior of the E-field in a fixed perpendicular plane, from the point of view of the receiver.

• For a monochromatic wave of frequency v, we write

$$E_{x} = A_{x} \cos(2\pi vt + \varphi_{x})$$
$$E_{y} = A_{y} \cos(2\pi vt + \varphi_{y})$$

These two equations describe an ellipse in the (x-y) plane.

- The ellipse is described fully by three parameters:
 - A_X , A_Y , and the phase difference, $\delta = \phi_Y \phi_X$.

 $\mathbf{k} \bullet \mathbf{E} = 0$

transverse wave

Elliptically Polarized Monochromatic Wave

The simplest description of wave polarization is in a Cartesian coordinate frame.

In general, three parameters are needed to describe the ellipse.

If the E-vector is rotating:

- clockwise, wave is 'Left Elliptically Polarized',
- counterclockwise, is 'Right Elliptically Polarized'.

equivalent to 2 independent E_x and E_y oscillators

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010

Polarization Ellipse Ellipticity and P.A.

- A more natural description is in a frame (ξ,η), rotated so the ξ-axis lies along the major axis of the ellipse.
- The three parameters of the ellipse are then:

 $\begin{array}{l} A_{\eta} : \mbox{the major axis length} \\ \mbox{tan } \chi = A_{\xi} / A_{\eta} : \mbox{the axial ratio} \\ \Psi : \mbox{the major axis p.a.} \end{array}$

• The ellipticity χ is signed: $\chi > 0 \rightarrow \text{REP}$ $\chi < 0 \rightarrow \text{LEP}$

 $\chi = 0.90^{\circ} \rightarrow \text{Linear} (\delta = 0^{\circ}, 180^{\circ})$ $\chi = \pm 45^{\circ} \rightarrow \text{Circular} (\delta = \pm 90$

Circular Basis

 We can decompose the E-field into a circular basis, rather than a (linear) Cartesian one:

$$\mathbf{E} = A_R \widehat{e}_R + A_L \widehat{e}_L$$

- where A_R and A_L are the amplitudes of two counter-rotating unit vectors, e_R (rotating counter-clockwise), and e_L (clockwise)
- NOTE: R,L are obtained from X,Y by a phase shift
- In terms of the linear basis vectors:

$$A_{R} = \frac{1}{2} \sqrt{A_{X}^{2} + A_{Y}^{2} - 2A_{X}A_{Y}} \sin \delta_{XY}$$
$$A_{L} = \frac{1}{2} \sqrt{A_{X}^{2} + A_{Y}^{2} + 2A_{X}A_{Y}} \sin \delta_{XY}$$

Circular Basis Example

- The black ellipse can be decomposed into an xcomponent of amplitude 2, and a y-component of amplitude 1 which lags by ¼ turn.
- It can alternatively be decomposed into a counterclockwise rotating vector of length 1.5 (red), and a clockwise rotating vector of length 0.5 (blue).

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010

Stokes parameters

- Stokes parameters I,Q,U,V
 - defined by George Stokes (1852)
 - scalar quantities independent of basis (XY, RL, etc.)
 - units of power (flux density when calibrated)
 - form complete description of wave polarization
 - Total intensity, 2 linear polarizations and a circular polarization
 - $= E_X^2 + E_Y^2 = E_R^2 + E_L^2$
 - $\mathbf{Q} = \mathbf{I} \cos 2\chi \cos 2\psi = \mathbf{E}_X^2 \mathbf{E}_Y^2 = 2 \mathbf{E}_R \mathbf{E}_L \cos \delta_{RL}$
 - $U = I \cos 2\chi \sin 2\psi$ = 2 $E_X E_Y \cos \delta_{XY}$ = 2 $E_R E_L \sin \delta_{RL}$
 - $V = I \sin 2\chi$ = 2 $E_X E_Y \sin \delta_{XY}$ = $E_R^2 E_L^2$
- Only 3 independent parameters:
 - $I^2 = Q^2 + U^2 + V^2$ for fully-polarized emission
 - If not fully polarized, $I^2 > Q^2 + U^2 + V^2$

Stokes parameters

- Linearly Polarized Radiation: V = 0
 - Linearly polarized flux:

$$P = \sqrt{Q^2 + U^2}$$

- Q and U define the linear polarization position angle:

$$\tan 2\Psi = U/Q$$

Polarization example

- VLA @ 8.4 GHz
 Laing (1996)
- Synchrotron radiation
 - relativistic plasma
 - jet from central "engine"
 - from pc to kpc scales
 - feeding >10kpc
 "lobes"
- E-vectors
 - along core of jet
 - radial to jet at edge

Sensitivity

• The radiometer equation for point source sensitivity:

$$\sigma_{S} = \frac{2k_{B}T_{sys}}{A_{eff}\sqrt{N(N-1)t_{int}\Delta\nu}}$$

- Increase the sensitivity by:
 - Increasing the bandwidth
 - Increasing the integration time
 - Increasing the number of antennas
 - Increasing the size/efficiency of the antennas
- Surface brightness sensitivity is MUCH worse
 - synthesized beam << beam size of single dish of same effective area

Summary: why should I use radio telescopes?

- Unparalleled resolution
 - Astrometry: positions, velocities, distances
 - High-resolution imaging
- Unique probe
 - Radio waves not scattered by dust: probe inner Galaxy
 - Low-energy, long-lived non-thermal emission
 - Spectral lines probe physical conditions of gas
- Signature of high-energy processes; link to X-ray emission
- Exotic phenomena
 - Coherent emission (pulsar phenomenon)
- New "Golden Age"
 - New telescopes opening up new parameter space

Radio Astronomy: A Golden Age!

Equations to take away

• Resolution of an interferometer

$$\theta = \frac{\lambda}{b_{\max}}$$

• Field of view of an interferometer

$$\theta = \frac{\lambda}{D}$$

• Sensitivity of an interferometer

$$\sigma_{s} = \frac{2k_{B}T_{sys}}{A_{eff}\sqrt{N(N-1)t_{int}\Delta\nu}}$$

• Relation between visibility and sky brightness

$$V_{\nu}(u,v) = \iint \frac{I_{\nu}(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i(ul+vm)} dl dm$$

