

Jets and Radio Loud AGN

Fanaroff-Riley Type 1: strong nucleus, asymmetric jets with wide opening angle ending in plumes

M84 (3C272.1) (Laing & Bridle, 1987): VLA 4885 MHz, $134'' \times 170''$; see also http://www.jb.man.ac.uk/atlas/other/3C272P1

Radio image of 3C175 (z = 0.768; A. Bridle, priv. comm.)

Fanaroff-Riley Type 2: weak (one-sided) jet ending in radio lobes, lobe dominated

Synchrotron Radiation

Jets are observed to have strong polarization and power law radio spectrum. These are characteristics of synchrotron radiation.

Synchrotron-Radiation (=Magnetobremsstrahlung): Radiation emitted by relativistic electrons in a magnetic field.

Goal: Qualitative analysis:

- 1. Derive the motion of electrons in magnetic fields
- 2. Then use Larmor's formula to obtain the radiation characteristic from relativistic motion
- 3. Use the **Doppler-effect** to convert into the observer's frame of reference.
- 4. Integrate over electron distribution to obtain the final spectrum.

Detailed theory: see Ginzburg & Syrovatskii (1965), Ginzburg & Syrovatskii (1969), Blumenthal & Gould (1970), Reynolds (1982).

Relativistic Motion

Lorentz-Force (
$$\mathbf{E} = \mathbf{0}$$
)

$$\frac{d\mathbf{p}}{dt} = \frac{e}{c}\mathbf{v} \times \mathbf{B} \quad \text{where} \quad \mathbf{p} = \frac{m_{\mathsf{e}}\mathbf{v}}{\sqrt{1-\beta^2}} = \gamma m_{\mathsf{e}}\mathbf{v} \tag{10.1}$$

where $\beta = v/c$.

Assumption: No radiative losses (i.e., electron does *not* emit synchrotron radiation...): $\gamma = \text{const.}$ Velocity-vector of the electron:

$$\mathbf{v}_{\parallel} = \frac{\mathbf{v} \cdot \mathbf{B}}{B} \frac{\mathbf{B}}{B} \qquad \qquad \mathbf{v}_{\perp} = \frac{\mathbf{B} \times (\mathbf{v} \times \mathbf{B})}{B^2} \qquad (10.2)$$
$$|\mathbf{v}_{\parallel}| = v \cos \alpha \qquad \qquad |\mathbf{v}_{\perp}| = v \sin \alpha \qquad (10.3)$$

where α (pitch-angle): $\angle(\mathbf{v}, \mathbf{B})$

No acceleration parallel to the B-fi eld \Longrightarrow only $v_{\!\perp}$ is interesting \Longrightarrow circular motion:

$$m_{\mathbf{e}}a_{\perp} = \frac{\gamma m_{\mathbf{e}}v_{\perp}^{2}}{R} = \frac{e}{c}v_{\perp}B \tag{10.4}$$

$$\frac{v_{\perp}}{R} = \frac{eB}{\gamma m_{\rm e}c} = \frac{\omega_{\rm L}}{\gamma} = \omega_{\rm B}$$
(10.5)

where $\omega_L = 2\pi \nu_L$: Larmor frequency (also Cyclotron frequency, gyrofrequency).

Numerical values

Numerically, Larmor frequency is

$$u_{\rm L} = 2.8 B_{1\,\rm G} \,\rm MHz$$
(10.6)

The radius of the orbit (Larmor radius) is

$$R = rac{\gamma v_{\perp}}{\omega_{
m L}} pprox 10^7 rac{E_{1
m GeV}}{B_{1
m G}} \,
m cm$$
 (10.7)

Typical values:

$$B \approx 10^{-5}$$
 G, $E = 1$ GeV, $\Longrightarrow R = 3 \times 10^{13}$ cm (2 AU).

i.e., small on cosmic scales

Radiated Energy, I

Electrodynamics: Radiation of an accelerated electron:

$$P_{\rm em} = \frac{2e^2}{3c^3} \gamma^4 \left(a_\perp^2 + \gamma^2 a_\parallel^2 \right) \tag{10.8}$$

where a is the acceleration.

([Messy] derivation by Lorentz-transforming the classical Larmor formula ($P = (2e^2/3c^3) \cdot a^3$), see, e.g., Shu)

For circular motion, $a_{\perp} = \omega_{\rm BV_{\perp}}$ and $a_{\parallel} = 0$. Hence

$$P_{\rm em} = \frac{2e^2}{3c^3} \gamma^4 \frac{v_{\perp}^2 e^2 B^2}{\gamma^2 m_{\rm e}^2 c^2}$$
(10.9)
$$= 2\beta^2 \gamma^2 c \cdot \sigma_{\rm T} \cdot U_{\rm B} \cdot \sin^2 \alpha$$
(10.10)

where $U_{\rm B} = B^2/8\pi$ (Energy density of the *B*-fi eld), $\sigma_{\rm T} = \frac{8\pi e^4}{3m_{\rm e}^2 c^4}$ (Thomson-cross section).

Presence of σ_T due to quantum electrodynamics: Derivation of synchrotron-radiation in frame of reference of electron via interaction of electron with a virtual photon of the magnetic field (i.e., Compton scattering with virtual photon).

Radiated Energy, II

Total energy radiated: Integration over all electrons.

Assumption: Isotropic velocity distribution.

Average pitch angle

$$\left\langle \sin^2 \alpha \right\rangle = \frac{1}{4\pi} \int_0^{4\pi} \sin^2 \alpha \, d\Omega = \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^{\pi} \sin^2 \alpha \sin \alpha \, d\alpha = \frac{2}{3} \tag{10.11}$$

therefore

$$\langle P_{\rm em} \rangle = \frac{4}{3} \beta^2 \gamma^2 c \sigma_{\rm T} U_{\rm B}$$
 (10.12)

for $\beta \longrightarrow 1$.

Note: Since $E = \gamma m_e c^2 \Longrightarrow P \propto E^2 U_B$. *Note:* $P_{em} \propto \sigma_T \propto m_e^{-2} \Longrightarrow$ Synchrotron radiation from charged particles with larger mass (protons,...) is negligible.

Note: Life-time of particle of energy E is

$$t_{1/2} \sim \frac{E}{P} \propto 1/(B^2 E) = 5 \,\mathrm{s} \,\left(\frac{B}{1\,\mathrm{T}}\right)^{-2} \gamma^{-1} = 1.6 \times 10^7 \,\mathrm{years} \,\left(\frac{B}{10^{-7}\,\mathrm{T}}\right)^{-2} \gamma^{-1}$$
 (10.13)

Synchrotron Radiation

10-8

Single Electron spectrum, I

after Rybicki & Lightman, Fig. 3.5

Frame of reference of electron: Emitted radiation has dipole characteristic (see, e.g., Eq. 6.2).

Lorentz-Transform into laboratory system: Forward Beaming. Opening angle is $\Delta \theta \approx \gamma^{-1}$.

after Rybicki & Lightman, Fig. 4.11d

Synchrotron Radiation

10-9

Single Electron spectrum, II

(Rybicki & Lightman, 1979, after Fig. 6.2)

Electron frame of rest: beam passes observer during time

$$\Delta t = \frac{\Delta \theta}{\omega_{\rm B}} = \frac{m_{\rm e} c \gamma}{e B} \frac{2}{\gamma} = \frac{2}{\omega_{\rm L}}$$
(10.14)

Single Electron spectrum, III

(Rybicki & Lightman, 1979, after Fig. 6.2)

Observer frame: Doppler! (electron is closer at end of beam) \implies observed pulse duration:

$$\tau = \left(1 - \frac{v}{c}\right)\Delta t = (1 - \beta)\Delta t \tag{10.15}$$

Single Electron spectrum, IV

For
$$\gamma \gg$$
 1, i.e., $\beta = v/c \sim$ 1

$$\frac{1}{\gamma^2} = 1 - \frac{v^2}{c^2} = (1 + \beta)(1 - \beta) \approx 2(1 - \beta)$$
(10.16)

such that

$$\tau = (1 - \beta)\Delta t = \frac{1}{2} \left(1 - \frac{v^2}{c^2} \right) \Delta t = \frac{1}{\gamma^2 \omega_{\rm L}}$$
(10.17)

Thus the characteristic frequency of the radiation is given by

$$\omega_{\rm c} = \gamma^2 \omega_{\rm L} = \frac{eB}{m_{\rm e}c} \left(\frac{E}{m_{\rm e}c^2}\right)^2 \tag{10.18}$$

after Shu, Fig. 18.2

The observed time-dependent *E*-Field, E(t), from one electron is a sequence of pulses of width τ , separated in time by Δt .

To a good precision, we can approximate these single peaks with δ -functions.

In reality: derive spectrum by Fourier-transforming E(t). Basic result is the same.

Nonthermal Synchrotron Radiation, I

Spectral energy distribution P_{ν} of one electron with total energy $E = \gamma m_{\rm e} c^2$ is

$$P_{\nu}(\gamma) = \frac{4}{3}\beta^2 \gamma^2 c \sigma_{\rm T} U_{\rm B} \delta(\nu - \gamma^2 \nu_{\rm L})$$
(10.19)

where $\delta(x)$ is a δ -function, i.e.,

$$\delta(x) = 0 \quad \text{for } x \neq 0 \quad \text{and} \quad \int_{-\infty}^{+\infty} \delta(x) \, dx = 1$$
 (10.20)

i.e., electron with energy γmc^2 "blinks" at frequency $\nu=\gamma^2\nu_{\rm L}={\rm 1}/{\tau}.$

For an electron distribution, $n(\gamma)$, the emitted spectrum is found by properly weighting contributions of electrons with different energies:

$$P_{\nu} = \int_{1}^{\infty} P_{\nu}(\gamma) n(\gamma) d\gamma$$
(10.21)

Most important case: nonthermal synchrotron radiation, where electrons have a power-law distribution

$$n(\gamma)d\gamma = n_0\gamma^{-p}d\gamma \tag{10.22}$$

Nonthermal Synchrotron Radiation, II

Insert distribution into Eq. (10.21) and perform the integration:

$$P_{\nu} = \int_{1}^{\infty} \frac{4}{3} \beta^{2} \gamma^{2} c \sigma_{\mathsf{T}} U_{\mathsf{B}} \delta(\nu - \gamma^{2} \nu_{\mathsf{L}}) n_{\mathsf{0}} \gamma^{-p} d\gamma$$
(10.23)

since $\gamma \gg 1$: $\beta \approx 1$

$$=A\int_{1}^{\infty}\gamma^{2-p}\delta(\nu-\gamma^{2}\nu_{\rm L})d\gamma$$
(10.24)

substituting $\nu' = \gamma^2 \nu_{\rm L}$, i.e., $d\nu' = \nu_{\rm L} 2 \gamma d\gamma$

$$=B\int_{\nu_{\rm L}}^{\infty}\gamma^{1-p}\delta(\nu-\nu')d\nu'$$
(10.25)

since $\gamma = (\nu'/\nu_{\rm L})^{1/2}$, one fi nally fi nds

$$P_{\nu} = \frac{2}{3} c \sigma_{\rm T} n_0 \frac{U_B}{\nu_{\rm L}} \left(\frac{\nu}{\nu_{\rm L}}\right)^{-\frac{p-1}{2}}$$
(10.26)

The spectrum of an electron power-law distribution is a power-law!

Shu, Fig. 18.4

Summary

What we have done so far:

- 1. Motion of the electron
- 2. Radiation characteristic from relativistic motion
- 3. Doppler-effect
- 4. Integration over electron distribution

It is possible to do the same analytically without any approximations. This is too complicated to be done here. See the references for details.

Exact Results, I

(Rybicki & Lightman, 1979, Fig. 6.7)

Exact calculation needs to take into account polarization of synchrotron radiation.

Exact Results, II

Result of exact calculation for both polarization directions:

$$\begin{pmatrix} P_{\parallel} \\ P_{\perp} \end{pmatrix} = \frac{\sqrt{3}}{2} \frac{e^3 B}{mc^2} \begin{pmatrix} F(\nu/\nu_{\rm c}) - G(\nu/\nu_{\rm c}) \\ F(\nu/\nu_{\rm c}) + G(\nu/\nu_{\rm c}) \end{pmatrix}$$
(10.27)

where

$$F(x) = x \int_{x}^{\infty} K_{5/3}(y) dy$$
 (10.28)

$$G(x) = x K_{2/3}(x)$$
(10.29)

and K_i are modified Bessel-functions of *i*-th order

Polarization allows to measure the magnetic field direction

x	F(x)	G (x)	x	F(x)	$\mathbf{E}(\mathbf{x})$
0	0	0	0.90	0.694	0.521
0.001	0.213	0.107	1.0	0.655	0.494
0.005	0.358	0.184	1.2	0.566	0.439
0.01	0.445	0.231	1.4	0.486	0.386
0.025	0.583	0.312	1.6	0.414	0.336
0.050	0.702	0.388	1.8	0.354	0.290
0.075	0.772	0.438	2.0	0.301	0.250
0.10	0.818	0.475	2.5	0.200	0.168
0.15	0.874	0.527	3.0	0.130	0.111
0.20	0.904	0.560	3.5	0.0845	0.0726
0.25	0.917	0.582	4.0	0.0541	0.0470
0.29	0.918	0.592	4.5	0.0339	0.0298
0.30	0.918	0.596	5.0	0.0214	0.0192
0.40	0.901	0.607	6.0	0.0085	0.0077
0.50	0.872	0.603	7.0	0.0033	0.0031
0.60	0.832	0.590	8.0	0.0013	0.0012
0.70	0.788	0.570	9.0	0.00050	0.00047
0.80	0.742	0.547	10.0	0.00019	0.00018

 $F(x) = x \int_{x}^{\infty} K_{5/2}(\eta) d\eta$ and $G(x) = x K_{2/2}(x)$

The total emitted power for monoenergetic electrons is

$$P(\nu) = P_{\parallel}(\nu) + P_{\perp}(\nu) \propto F(\nu)$$
 (10.30)

As before, the total emitted spectrum is found by integrating over the electron energy distribution. For a power-law:

$$\begin{pmatrix} P_{\parallel}(\nu) \\ P_{\perp}(\nu) \end{pmatrix} = \left(\frac{\sqrt{3}}{2}\right) n_0 \frac{e^3 B}{m_{\rm e} c^2} \begin{pmatrix} J_F - J_G \\ J_F + J_G \end{pmatrix} \left(\frac{2\nu}{3\nu_{\rm L}}\right)^{-(p-1)/2}$$
(10.31)

where

$$J_F = \frac{2^{(p+1)/2}}{p+1} \Gamma\left(\frac{p}{4} + \frac{19}{12}\right) \Gamma\left(\frac{p}{4} - \frac{19}{12}\right)$$
(10.32)
$$J_G = 2^{(p-3)/2} \Gamma\left(\frac{p}{4} + \frac{7}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right)$$
(10.33)

 $\Gamma(x) = \int_{\mathbf{0}}^{\infty} t^{-x} e^{-t} dt$ is the Gamma-function.

Synchrotron Radiation

10-19

(10.34)

(10.35)

Degree of Polarization

The degree of polarization is defined by

degree of polarization := $\frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}}$

For a power law electron distribution:

$$\frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}} = \frac{J_G}{J_F} = \frac{p + \mathbf{1}}{p + \mathbf{7/3}}$$

For p = 2.5 the degree of polarization is $\sim 70\%$. This is very large!!

Caveat: Faraday-rotation and B-fi eld inhomogeneities can decrease the degree of polarization.

Synchrotron Self-Absorption

At low ν : synchrotron emitting electrons can absorb synchrotron photons: synchrotron self-absorption.

after Shu, Fig. 18.6

For a power law electron distribution $\propto E^{-p}$, total spectral shape is:

For low frequencies: $P_{\nu} \propto B^{-1/2} \nu^{5/2}$ (independent of p!) For large frequencies: $P_{\nu} \propto \nu^{-(p-1)/2}$

At very high frequencies, additional break due to electron energy losses. The transition frequency can be used to measure the strength of the B-Field. See text-books on radio astronomy.

The M87 Jet

PRC00-20 • Space Telescope Science Institute • NASA and The Hubble Heritage Team (STScI/AURA)

NRAO/AUI

Jet Spectrum

(M87; Perlman et al., 2002)

Spectral shape of jet emission is a power law \implies synchrotron radiation

Typical power law index: $\alpha \sim 0.65$ between radio and optical.

Jet Physics

Jet Polarization

polarization in two-sided jet sources (FR 1): up to 40%

B-field orientation:

- close to core: $B \parallel jet axis$
- away from core (∼10% jet

length): $B \perp jet axis$

 $B\mbox{-fi}$ eld can change orientation again in knots

(*B*-fi eld confi guration in IC 4296; Killeen, Bicknell & Ekers, 1986, Fig. 25b)

Jet Physics

polarization in one-sided jet sources (FR 2): similar to FR 1, i.e., 40% and higher

B-field orientation in FR 2: parallel to jet axis throughout the jet

(*E*-fi eld confi guration in NGC 6251, note: *B*-fi eld is perpendicular to *E*-fi eld!;Perley, Bridle & Willis, 1984, Fig. 17)

Jet motion in 3C120 (Marscher et al., 2002) 3C120: Sy 1, $M_{\rm BH} = 3 \times 10^7 M_{\odot}$ from reverberation mapping MOVIE TIME: jetmovies/3c120rx.avi

Superluminal Motion, II

Superluminal Motion in the M87 Jet

3C120: Apparent speed of jet: $\sim 5c$ M87: Apparent speed of jet: $\sim 6c$

Superluminal motion: The apparent velocities measured in many AGN jets are v > c.

First discovered in 1971 in 3C273.

Biretta/STScl

Jet Motion

10-29

Superluminal Motion, III

Consider blob moving towards us with speed v and angle ϕ with respect to line of sight, emitting light signals at t_0 and $t_1 = t_0 + \Delta t_e$

Light travel time: Observer sees signals separated by

$$\Delta t_{\mathsf{o}} = \Delta t_{\mathsf{e}} - \Delta t_{\mathsf{e}} \frac{v}{c} \cos \phi = \left(1 - \frac{v}{c} \cos \phi\right) \Delta t_{\mathsf{e}}$$
(10.36)

Observed distance traveled in plane of sky:

$$\Delta \ell_{\perp} = v \Delta t_{\rm e} \sin \phi \tag{10.37}$$

Apparent velocity deduced from observations:

$$v_{\mathsf{app}} = \frac{\Delta \ell_{\perp}}{\Delta t_{\mathsf{o}}} = \frac{v \Delta t_{\mathsf{e}} \sin \phi}{\left(1 - \frac{v}{c} \cos \phi\right) \Delta t_{\mathsf{e}}} = \frac{v \sin \phi}{\left(1 - \frac{v}{c} \cos \phi\right)} \tag{10.38}$$

 \Longrightarrow For v/c large and ϕ small: $v_{\rm app} > c$

Superluminal Motion, V

A relativistic invariant, I

So, if ϕ is known, we can determine real speed.

In order to determine ϕ , we have to make use of an useful relativistic invariant:

$$\frac{I_{\rm nu}}{\nu^3} = \text{const.} \tag{10.39}$$

in all frames of reference.

Proof: The number of photons with momentum in interval $\mathbf{p}, \mathbf{p} + d^3$ is given by

$$dN = 2n\left(\frac{V\,d^3p}{h^3}\right) \tag{10.40}$$

where *n*: photon number, $V d^3 p$: phase volume, h^3 : volume of phase space cell. \implies Energy flowing through volume element $d^3 x = dA(c dt)$:

$$dE = h\nu \, dN = 2nh\nu \, dA(c \, dt) \left(\frac{d^3p}{h^3}\right) \tag{10.41}$$

A relativistic invariant, II

Since $p = h\nu/c$:

$$d^{3}p = p^{2} dp d\Omega = \left(\frac{h\nu}{c}\right)^{2} h \frac{d\nu}{c} d\Omega = \left(\frac{h}{c}\right)^{3} \nu^{2} d\nu d\Omega$$
(10.42)

Therefore

$$dE = 2nh\nu c \, dA \, dt \left(\frac{d^3p}{h^3}\right) = \frac{2h\nu^3}{c^2} n \, dA \, dt \, d\Omega \, d\nu \tag{10.43}$$

or

$$\frac{dE}{dA\,dt\,d\Omega\,d\nu} = I = \frac{2h\nu^3}{c^2}n\tag{10.44}$$

Therefore

$$\frac{I}{\nu^3} = \frac{2h}{c^2}n$$
 (10.45)

and since n is just a number, I/ν^3 is Lorentz-invariant.

Relativistic Aberration

Relativistic invariance: $I_{\nu}/\nu^3 = \text{const.}$ where I_{ν} is the intensity.

Therefore, observed intensity of a moving blob:

$$\frac{I(\nu_{\text{obs}})}{\nu_{\text{obs}}^3} = \frac{I(\nu_{\text{em}})}{\nu_{\text{em}}^3}$$
(10.46)

Because of the relativistic Doppler effect:

$$\nu_{\rm obs} = \frac{\nu_{\rm em}}{\gamma(1 - \beta \cos \phi)} \tag{10.47}$$

($\beta = v/c$) and thus

$$I(\nu_{\text{obs}}) = \nu_{\text{obs}}^{3} \frac{I(\nu_{\text{em}})}{\nu_{\text{em}}^{3}} = \frac{I(\nu_{\text{em}})}{\left(\gamma(1 - \beta\cos\phi)\right)^{3}}$$
(10.48)

Specifi cally, for a blob with a power law spectrum:

$$I(\nu_{\text{obs}}) = \frac{A\nu_{\text{em}}^{-\alpha}}{\left(\gamma(1-\beta\cos\phi)\right)^3} = \frac{A\left(\gamma(1-\beta\cos\phi)\right)^{-\alpha}\nu_{\text{obs}}^{-\alpha}}{\left(\gamma(1-\beta\cos\phi)\right)^3} = \frac{A\nu_{\text{obs}}^{-\alpha}}{\left(\gamma(1-\beta\cos\phi)\right)^{3+\alpha}}$$
(10.49)

(where A is the normalization constant of the power law).

Relativistic Aberration

Now take a source emitting blobs symmetrically in two directions.

From Eq. (10.49) the ratio of fluxes from the blobs is

$$\frac{F_1}{F_2} = \left(\frac{1+\beta\cos\phi}{1-\beta\cos\phi}\right)^{3+\alpha}$$
(10.50)

Radiation from a blob moving towards observer is strongly boosted.

Jet can be expressed as a series of blobs. But the number of blobs observed scales as $(\gamma(1 - v \cos \phi))^{-1}$, such that for jets:

$$\frac{F_1}{F_2} = \left(\frac{1+\beta\cos\phi}{1-\beta\cos\phi}\right)^{2+\alpha}$$
(10.51)

One sidedness of jets is a relativistic effect.

From measuring F_1/F_2 , we can in principle determine ϕ .

Relativistic Aberration

Jet Statistics, I

Kellermann et al. (2004): Largest survey of jets performed so far.

- Wavelength 2 cm (15 GHz)
- All AGN with flat spectra (α < 0.5 for $S_{\nu} \propto \nu^{-\alpha}$) and fluxes above 1.5 Jy at 15 GHz
- Survey started in 1994, ended in 2001, typically 7 observations per source
- 208 features in 110 AGN (Seyfert, BL Lac, Quasars).
- movies and images at http://www.nrao.edu/2cmsurvey (recommended!)

10 - 38

Distribution of observed velocities:

- apparent velocity range: $\beta \leq 15$
- Quasars: tail up to $\beta \sim$ 34
- others: mainly $\beta \lesssim 6$

(Kellermann et al., 2004, Fig. 4)

Jet Statistics, III

(Kellermann et al., 2004, Fig. 6)

Relation between β and luminosity: larger scatter at higher *L*

This does *not* mean that lower L sources have lower speeds, since observational effects also play a role:

sample is flux limited

- ⇒ faintest sources are close, and probably represent the most normal sources
- ⇒ probability that high Lorentz factor jets point in our direction grows with sampled volume, so perhaps the distribution is a selection effect.

Jet Propagation and Formation

In many sources, bent trajectories are observed, which do not follow jet axis ⇒ do blobs follow pre-existing channel?

- \implies nonballistic motion?
- ⇒ difference between bulk motion and pattern motion?

(Kellermann et al., 2004, Fig. 7)

Jet propagation is very diffi cult hydrodynamics: generally solved numerically

Numerical simulation of a Mach=6 jet (Top: density, bottom: pressure Lind et al., 1989).

Turbulent structure due to Kelvin-Helmholtz instability (hydrodynamical instability in shear fbws)

(Mizuta, Yamada & Takabe, 2004)

NGC 1265: radio galaxy in Perseus cluster, moving with 2000 km s^{-1} through intergalactic medium.

(NRAO/AUI; O'dea & Owen, 1986)

E-fi eld structure of NGC 1265 (O'dea & Owen, 1986)

Declination (1950.0

(NRAO/AUI/Owen et al.)

3C75 in Abell 400 at $\lambda = 20$ cm: twin radio jets from double core.

Hydra A: Multiple cavities drifting outwards through the intergalactic medium. Cavity system created in the past 200–500 Myears

green: radio, blue: X-rays, after subtracting elliptical β -model for gas distribution.

Size scale: outer cavities have diameters of 200 and 120 kpc.

(courtesy Mike Wise, UvA, astro-ph/0612100)

Formation of jet substructure / cavities in MHD simulations of a jet penetrating into a cluster gas

courtesy M. Brüggen (IUB) and UKAFF

Global view of jet-IGM-interaction and cavity formation

courtesy M. Brüggen (IUB) and UKAFF

Movie: jetmovies/brueggen_moviebig2.avi see Heinz et al., 2006, MNRAS

Jets and IGM, VII

Radio lobe physics:

Total energy content of lobe for a power law distribution of electrons, $n(E) = n_0 E^{-p}$:

$$U_{\rm e} = V \int_{E_1}^{E_2} n(E) E \, dE = \frac{V n_0}{2 - p} \left(E_2^{2 - p} - E_1^{2 - p} \right) \tag{10.52}$$

Integrating over the synchrotron spectrum (Eq. (10.26)) gives the total synchrotron luminosity produced by this electron population:

$$L = \frac{4\sigma_{\rm T} U_B V n_0}{3m_{\rm e}^2 c^4} \left(\frac{E_2^{3-p} - E_1^{3-p}}{3-p}\right)$$
(10.53)

Using the characteristic frequency

$$\omega_{\rm c} = \gamma^2 \omega_{\rm L} = \frac{eB}{m_{\rm e}c} \left(\frac{E}{m_{\rm e}c^2}\right)^2 \tag{10.18}$$

 E_1 and E_2 can be expressed in terms of the frequency band over which the power law is observed, ν_1 , ν_2 . After some messy calculation one obtains:

$$\frac{U_{\rm e}}{L} = \frac{A}{B^{3/2}}$$
(10.54)

where A is some constant.

Jet Propagation and Formation

Jets and IGM, VIII

The total kinetic energy in particles is

$$U_{\text{particles}} = aU_{\text{e}} = aAB^{-3/2}L \tag{10.55}$$

where a > 1 (since there are other particles than electrons in the lobe). Therefore the total energy of the radio lobe is

$$U_{\rm tot} = U_{\rm particles} + U_B = \frac{aAL}{B^{3/2}} + \frac{VB^2}{8\pi}$$
(10.56)

The minimum of U_{tot} is reached for

$$B_{\min} = \left(\frac{6\pi a A L}{V}\right)^{2/7} \tag{10.57}$$

while the equipartition *B*-fi eld, for which $U_{\text{particles}} = U_B$ is

$$B_{\rm eq} = \left(\frac{8\pi aAL}{V}\right)^{2/7} \tag{10.58}$$

Since the total energy for equipartition is $1.01U_{min}$, one often assumes synchrotron sources are in equipartition.

First noticed by Burbidge (1959).

Jet Propagation and Formation

10-51

Jets and IGM, IX

Radio lobes:

- Typical luminosity is a few times $L = 10^{44} \, \mathrm{erg} \, \mathrm{s}^{-1}$
- \bullet Typical B-fields are $\sim 10^{-4}\,\mathrm{G}$

Assuming equipartition: typical energy content of a radio lobe: $E \sim 10^{60} \text{ erg}$ corresponding to 10^7 supernovae

- \implies lobe lifetime $t \sim E/L \sim 10^8 \, {\rm yr}$
- \implies jets and lobes are rather long lived phenomena

Equipartition holds only approximately true for jets and lobes (see, e.g., Heinz & Begelman 1997).

Jet Formation

⁽GRS 1915+105; Mirabel et al., 1998)

Dynamics of jet formation are better studied in Galactic black holes with jets ("microquasars") because of shorter timescales.

Find clear X-ray–radio correlation (similar also seen in some AGN such as 3C120)

 \implies "universal disk-jet-connection"

Jet Propagation and Formation

Jet Formation

X-ray binaries:
$$S_{\rm radio} \propto S_X^{0.7}$$

⇒ Radio and X-ray fluxes are correlated: evidence for interaction between disk and jet!

(Gallo, Fender & Pooley, 2003)

Jet Propagation and Formation

movie time: jetmovies/agn_xray_020505_11_640x480_95pc Marscher et al. (2002): 3C120: X-ray dips followed by radio ejection events \implies jets and accretion disk are related.

Jet Formation

Evolution of a newly launched jet (Kigure & Shibata, 2005)

To study jet confinement and propagation: use magnetohydrodynamical simulations

Jet Propagation and Formation

Temperature profile and *B*-field configuration of a MHD-jet

Movie: jetmovies/d155mvj.avi: Time evolution of *B*-fi eld and density close to a BH (Matsumoto&Machida).

(Kigure & Shibata, 2005, Fig. 6)

Jet Formation

(McKinney, 2006, Fig. 1)

 $\log \rho$ (left) and $\log \rho$ and B for a jet launched via a disk. Outer radius is $10^4 GM/c^2$.

Jet Propagation and Formation

Jet Formation

(McKinney, 2006, Fig. 2)

 $\log \rho$ (left) and $\log \rho$ and B for a jet launched via a disk. Outer radius is $10^2 GM/c^2$.

Jet Propagation and Formation

10–60

Movie time:

- diskmovies/rho3.mpg: jet simulation out to $40GM/c^2$ (McKinney)
- \bullet diskmovies/rout400new.lrho.3.mpg: jet simulation out to $400 GM/c^2$ (McKinney)

10-60

- Blumenthal, G. R., & Gould, R. J., 1970, Rev. Mod. Phys., 42, 237
- Burbidge, G. R., 1959, ApJ, 129, 849
- Gallo, E., Fender, R. P., & Pooley, G. G., 2003, MNRAS, 344, 60
- Ginzburg, V. L., & Syrovatskii, S. I., 1965, Ann. Rev. Astron. Astrophys., 3, 297
- Ginzburg, V. L., & Syrovatskii, S. I., 1969, Ann. Rev. Astron. Astrophys., 7, 375
- Heinz, S., & Begelman, M. C., 1997, ApJ, 490, 653
- Kellermann, K. I., et al., 2004, ApJ, 609, 539
- Kigure, H., & Shibata, K., 2005, ApJ, 634, 879
- Killeen, N. E. B., Bicknell, G. V., & Ekers, R. D., 1986, ApJ, 302, 306
- Laing, R. A., & Bridle, A. H., 1987, MNRAS, 228, 557
- Lind, K. R., Payne, D. G., Meier, D. L., & Blandford, R. D., 1989, ApJ, 344, 89
- Marscher, A. P., Jorstad, S. G., Gómez, J.-L., Aller, M. F., Teräsranta, H., Lister, M. L., & Stirling, A. M., 2002, Nature, 417, 625
- McKinney, J. C., 2006, MNRAS, 368, 1561
- Mirabel, I. F., Dhawan, V., Chaty, S., Rodríguez, L. F., Martí, J., Robinson, C. R., Swank, J., & Geballe, T. R., 1998, A&A, 330, L9
- Mizuta, A., Yamada, S., & Takabe, H., 2004, ApJ, 606, 804
- O'dea, C. P., & Owen, F. N., 1986, ApJ, 301, 841
- Perley, R. A., Bridle, A. H., & Willis, A. G., 1984, ApJS, 54, 291
- Perlman, E. S., Biretta, J. A., Sparks, W. B., Macchetto, F. D., & Leahy, J. P., 2002, New Astronomy Review, 46, 399
- Reynolds, S. P., 1982, ApJ, 256, 13
- Rybicki, G. B., & Lightman, A. P., 1979, Radiative Processes in Astrophysics, (New York: Wiley)