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Introduction 1

Introduction

Result of previous lectures:

AGN produce large amounts of energy over timescales of & 108 years

and they strongly interact with their environment.

Questions:

• What galaxies harbor AGN?

• Are these galaxies different from others?

• How do galaxies with AGN evolve?

• How do AGN form?

To answer these questions, we need to study statistical properties of AGN and

their hosts, both among morphological type and with time: AGN surveys

But first, we need to talk about the basics of doing science in an expanding universe.
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Expanding Universe 1

Basic Facts

Observations show that there are four major facts about the universe as a whole:

The universe is: • expanding,

• isotropic,

• and homogeneous.

That the universe is isotropic and homogeneous is called the cosmological

principle.
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Expanding Universe 2

Expansion, I

Hubble (1929): The “velocity´´,

v, of a galaxy depends linearly

from its distance, d: v(r) = H0d

where v/c = ∆λ/λ and where H0:

Hubble constant or Hubble

parameter.

Currently accepted value:

H0 = 72± 8 km s−1 Mpc−1

(11.1)

Freedman et al. (2001, Fig. 4)



courtesy 2dF QSO Redshift survey

As a consequence of the cosmological redshift, for different z

different parts of the spectrum of a distant source are visible.



2dF Survey, ∼220000 galaxies total
The universe is homogeneous ⇐⇒ The universe looks the same everywhere in space

Testable by observing spatial distribution of galaxies.

On scales � 100 Mpc the universe looks indeed the same. Below that: structure.

Structures seen are galaxy clusters (gravitationally bound) and superclusters (larger structures, not [yet]
gravitationally bound).
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Expanding Universe 5

Isotropy

The universe is isotropic ⇐⇒ The

universe looks the same in all

directions

Radio galaxies are mainly quasars

=⇒ Sample large space volume

(z & 1) =⇒ Clear isotropy.

Anisotropy in the image: galactic plane,
exclusion region around Cyg A, Cas A,
and the north celestial pole.

Peebles (1993): Distribution of

31000 objects at λ =6 cm from the

Greenbank Catalogue.
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Expanding Universe 6

World Models, I

World Model: theoretical framework describing a world governed by the

cosmological principle.

Use combination of
• General Relativity

• Thermodynamics

• Quantum Mechanics
=⇒ Complicated!

For 99% of the work, the above points can be dealt with separately:
1. Define metric obeying cosmological principle.

2. Obtain equation for evolution of universe using Einstein field equations.

3. Use thermo/QM to obtain equation of state.

4. Solve equations.
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Expanding Universe 7

World Models, II

Before we can start to think about universe: Brief introduction to assumptions of

general relativity.

=⇒ See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

• Space is 4-dimensional, might be curved

• Matter (=Energy) modifies space (Einstein field equation).

• Covariance: physical laws must be formulated in a coordinate-system

independent way.

• Strong equivalence principle: There is no experiment by which one can

distinguish between free falling coordinate systems and inertial systems.

• At each point, space is locally Minkowski (i.e., locally, SRT holds).

=⇒Understanding of geometry of space necessary to understand physics.
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Expanding Universe 8

RW Metric, I

• Cosmological principle + expansion =⇒ ∃ freely expanding cosmical

coordinate system.

– Observers =: fundamental observers

– Time =: cosmic time
This is the coordinate system in which the 3K radiation is isotropic, clocks can be synchronized, e.g., by
adjusting time to the local density of the universe.

=⇒ Metric has temporal and spatial part.
This also follows directly from the equivalence principle.

• Homogeneity and isotropy =⇒ spatial part is spherically symmetric:

dψ2 := dθ2 + sin2 θ dφ2 (11.2)

• Expansion: ∃ scale factor, R(t) =⇒ measure distances using comoving

coordinates.
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Expanding Universe 9

RW Metric, II

A metric based on these points looks like

ds2 = c2 dt2 −R2(t)
[

f 2(r) dr2 + g2(r) dψ2
]

(11.3)

where f (r) and g(r) are arbitrary.

Metrics of the form of eq. (11.3) are called Robertson-Walker (RW) metrics (1935), but have been

previously also studied by Friedmann and Lemaître.

One common choice is

ds2 = c2 dt2 −R2(t)
[

dr2 + S2
k(r) dψ2

]

(11.4)

where R(t): scale factor, containing the physics, t: cosmic time, r, θ, φ: comoving coordinates,

and where

Sk(θ) =







sin θ for k = +1

θ for k = 0

sinh θ for k = −1

(11.5)

Remark: θ and φ describe directions on sky, as seen from the arbitrary center of the coordinate

system (=us), r can be interpreted as a radial coordinate.
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Expanding Universe 10

RW Metric, III

RW metric: defines universal coordinate system tied to the expansion of space:

B(x2,y2)

A(x1,y1)

A(x1,y1)

B(x2,y2)
.d R(t1).

d R(t2)

Scale factor R(t) describes evolution of universe.

• d is called the comoving distance.

•D(t) := d · R(t) is called the proper distance.

(note that R is unitless, i.e., d and d ·R(t) are measured in Mpc)
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Expanding Universe 11

Hubble’s Law, I

Hubble’s Law follows from the variation of R(t):

R(t+
dt

)r

R(t)
r

r r
Small scales =⇒ Euclidean geometry. Proper distance between two observers:

D(t) = d ·R(t) (11.6)

Expansion =⇒ proper separation changes:

∆D

∆t
=
R(t + ∆t)d−R(t)d

∆t
with lim

∆t→0
: v =

dD

dt
= Ṙ d =

Ṙ

R
D =: H D (11.7)

=⇒ Identify local Hubble “constant” with

H = Ṙ/R = ȧ(t) where a(t) = R(t)/R(today) (11.8)

Note that R = R(t) =⇒H is time-dependent!
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Expanding Universe 12

Hubble’s Law, II

The cosmological redshift is a consequence of the expansion of the universe:

Since the comoving distance is constant:

d =
D(t = today)

R(t = today)
=
D(t)

R(t)
= const. (11.9)

Set a(t) = R(t)/R(t = today), then Eq. (11.9) implies

λobs =
λemit

aemit
⇐⇒ z =

λobs − λemit

λemit
=
λobs

λemit
− 1 (11.10)

(z: observed redshift, λobs: observed wavelength, λemit: emitted wavelength)

1 + z =
1

aemit
=
R(t = today)

R(t)
(11.11)

Light emitted at z = 1 was emitted when the universe was half as big as today!

z: measure for relative size of universe at time the observed light was emitted.
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Expanding Universe 13

Hubble’s Law, III

For light, d = c∆t. Therefore

c ∆te
R(temit)

=
c ∆tobs

R(tobs)
such that

dt

R(t)
= const. (11.12)

This means that
dtobs

dtemit
=
R(tobs)

R(temit)
= 1 + z (11.13)

=⇒ Time dilatation of events at large z.

This cosmological time dilatation has been observed in the light curves of

supernova outbursts.
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Expanding Universe 14

Expansion and Spectra

The total number of photons in a box dA · cdt and in a frequency range ν to ν + dν is

N = nν(ν) dA dν c dt (11.14)

This number is conserved during the expansion of the universe:

nν(νemit) dA dνemit c dtemit = nν(νobs)
dνemit

1 + z
dAc dtemit(1 + z) (11.15)

nν(νobs) dA dνobs c dtobs (11.16)

but: arrival time differs =⇒ energy flux density changes:

Fν(νobs) = hνobsnν(νobs) = h
νemit

1 + z
νn(νemit) =

Fν(νemit)

1 + z
(11.17)

and consequently the total flux in a certain energy band changes as well:

Fobs =

∫

Fν(νobs) dνobs =

∫
Fν(νemit)

1 + z
· dνemit

1 + z
=

Femit

(1 + z)2
(11.18)

One power of 1 + z from decreased photon energy, one from decreased arrival rate.

For wavelength based flux densities, since F λ = Fνc/λ
2 one finds Fλ(λobs) = Fλ(λemit)/(1 + z)3.
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Expanding Universe 15

Luminosity Distance

For AGN studies at high z, we need to take into account cosmological effects:

How to convert a measured flux into luminosity.

Assume source with luminosity L at comoving coordinate r.

When light has reached us, then it has spread over sphere of area

A = 4π(R0r)
2 (11.19)

R0: today’s scale factor

such that the flux measured in the same reference frame is

Fref =
L

4π(R0r)2
(11.20)

and the measured flux is (correcting for Doppler effect):

F =
Fref

(1 + z)2
=

L

4π(1 + z)2(R0r)2
(11.21)
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Expanding Universe 16

Friedmann Equations, I

General relativistic approach: Insert metric into Einstein equation to obtain

differential equation for R(t):

Einstein equation:

Rµν −
1

2
Rgµν

︸ ︷︷ ︸

Gµν

=
8πG

c4
Tµν + Λgµν (11.22)

where

gµν: Metric tensor (ds2 = gµν dxµ dxν)

Rµν: Ricci tensor (function of gµν)

R: Ricci scalar (function of gµν)

Gµν: Einstein tensor (function of gµν)

Tµν: Stress-energy tensor, describing curvature of space due to fields present

(matter, radiation,. . . )

Λ: Cosmological constant

=⇒Messy, but doable
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Expanding Universe 17

Friedmann Equations, II

d 
R(t)

m

M

Here, Newtonian derivation of Friedmann equations:

Dynamics of a mass element on the surface of

sphere of density ρ(t) and comoving radius d, i.e.,

proper radius d ·R(t) (after McCrea & Milne, 1934).

Mass of sphere:

M =
4π

3
(dR)3ρ(t) =

4π

3
d3ρ0 where ρ(t) =

ρ0

R(t)3

(11.23)

Force on mass element:

m
d2

dt2
(

dR(t)
)

= − GMm

(dR(t))2
= −4πG

3

dρ0

R2(t)
m

(11.24)

Canceling m · d gives the momentum equation:

R̈ = −4πG

3

ρ0

R2
= −4πG

3
ρ(t)R(t) (11.25)
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Expanding Universe 18

Friedmann Equations, III

Multiplying

R̈ = −4πG

3

ρ0

R2
= −4πG

3
ρ(t)R(t) (11.25)

with Ṙ and integrating, or alternatively considering energy conservation yields the energy

equation,

1

2
Ṙ2 = +

4πG

3

ρ0

R(t)
+ const.

= +
4πG

3
ρ(t)R2(t) + const.

(11.26)

where the constant can only be obtained from GR.

Note: derivation implicitly assumes rcloud <∞, which violates the cosmological principle, and

assumes that the particle moves through space, which violates SRT. However, since GR ∼
Newton on small scales and mass densities, there is a scale invariance on Mpc scales and

Newton is valid in the classical limit of GR.
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Expanding Universe 19

Friedmann Equations, IV

The exact GR derivation of Friedmanns equation gives:

R̈ = −4πG

3
R

(

ρ +
3p

c2

)

+

[
1

3
ΛR

]

Ṙ2 = +
8πGρ

3
R2 − kc2 +

[
1

3
Λc2R2

] (11.27)

Notes:

1. For k = 0: Eq. (11.27) −→ Eq. (11.26).

2. k ∈ {−1, 0,+1} determines the curvature of space.

3. The density, ρ, includes the contribution of all different kinds of energy (remember

mass-energy equivalence!).

4. There is energy associated with the vacuum, parameterized by the parameter Λ.

The evolution of the Hubble parameter is (Λ = 0):
(

Ṙ

R

)2

= H2(t) =
8πGρ

3
− kc2

R2
(11.28)
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Expanding Universe 20

Friedmann Equations, V

Solving Eq. (11.28) for k:

R2

c

(
8πG

3
ρ−H2

)

= k (11.29)

=⇒Sign of curvature parameter k only depends on density, ρ:

Defining

ρc =
3H2

8πG
and Ω =

ρ

ρc
(11.30)

it is easy to see that:
Ω > 1 =⇒ k > 0 closed

Ω = 1 =⇒ k = 0 flat

Ω < 1 =⇒ k < 0 open

thus ρc is called the critical density.

For Ω ≤ 1 the universe will expand until ∞,

for Ω > 1 we will see the “big crunch”.

Current value of ρc: ∼ 1.67 × 10−24 g/cm3,

(3. . . 10 H-atoms/m3).

Measured: Ω = 0.1 . . . 0.3.

(but note that Λ can influence things (ΩΛ = 0.7)!).
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Expanding Universe 21

Friedmann Equations, VI

Current scale factor is determined by H0 and Ω0:

Friedmann for t = t0:

Ṙ2
0 −

8πG

3
ρR2

0 = −kc2 (11.31)

Insert Ω and note H0 = Ṙ0/R0

⇐⇒ H2
0R

2
0 −H2

0Ω0R
2
0 = −kc2 (11.32)

And therefore

R0 =
c

H0

√

k

Ω − 1
(11.33)

For Ω −→ 0, R0 −→ c/H0, the Hubble length, for Ω = 1, R0 is arbitrary.

We now have everything we need to solve the Friedmann equation and

determine the evolution of the universe.
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Expanding Universe 22

Friedmann Equations, VII

Three different equations of state determine evolution:

Matter: Normal particles get diluted by expansion of the universe:

ρm ∝ R−3 (11.34)

Radiation: The energy density of radiation decreases because of volume

expansion and because of the cosmological redshift

(λo/λe = νe/νo = R(to)/R(te)):

ρr ∝ R−4 (11.35)

Vacuum: The vacuum energy density (=Λ) is independent of R:

ρv = const. (11.36)

Inserting these equations of state into the Friedmann equation and solving with the boundary

condition R(t = 0) = 0 then gives a specific world model.
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Expanding Universe 23

k = 0, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R3
R2 = 0 (11.37)

For k = 0: Ω = 1 and
8πGρ0

3
= Ω0H

2
0R

3
0 = H2

0R
3
0 (11.38)

Therefore, the Friedmann eq. is

Ṙ2 − H2
0R

3
0

R
= 0 =⇒ dR

dt
= H0R

3/2
0 R−1/2 (11.39)

Separation of variables and setting R(0) = 0,
∫ R(t)

0
R1/2 dR = H0R

3/2
0 t ⇐⇒ 2

3
R3/2(t) = H0R

3/2
0 t (11.40)

Such that

R(t) = R0

(
3H0

2
t

)2/3

(11.41)

For k = 0, the universe expands until ∞, its current age (R(t0) = R0) is given by

t0 =
2

3H0
where the Hubble-Time is H−1

0 = 9.78 Gyr/h (11.42)
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k = +1, Matter dominated, I

For the matter dominated, closed case, Friedmanns equation is

Ṙ2 − 8πG

3

ρ0R
3
0

R
= −c2 ⇐⇒ Ṙ2 − H2

0R
3
0Ω0

R
= −c2 (11.43)

Inserting R0 from Eq. (11.33) gives

Ṙ2 − H2
0c

3Ω0

H3
0(Ω − 1)3/2

1

R
= −c2 (11.44)

which is equivalent to

dR

dt
= c

(
ξ

R
− 1

)1/2

with ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(11.45)

With the boundary condition R(0) = 0, separation of variables gives

ct =

∫ R(t)

0

dR

(ξ/R− 1)1/2
=

∫ R(t)

0

√
R dR

(ξ −R)1/2
(11.46)

Integration by substitution gives

R = ξ sin2 θ

2
=
ξ

2
(1 − cos θ) =⇒ ct =

ξ

2
(θ − sin θ) (11.47)
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k = +1, Matter dominated, II

1.5 2.0 2.5 3.0 3.5 4.0
Ω

4.5

5.0

5.5

6.0

6.5

t 0
/h

 [G
yr

]

The age of the

universe, t0, is obtained

by solving

R0 =
c

H0(Ω0 − 1)1/2

(11.48)

and can be shown to be

t0 =
1

2H0

Ω0

(Ω0 − 1)3/2

[

arccos

(
2 − Ω0

Ω0

)

− 2

Ω0

√

Ω0 − 1

]

(11.49)



-20 0 20 40 60
t-t0 (arbitrary units)

0.0

0.5

1.0

1.5

R
(t

)/
R

(t
0)

Ω=5 Ω=3

Ω=10

Since R is a cyclic function =⇒ The closed universe has a finite lifetime.

Max. expansion at θ = π, with a maximum scale factor of

Rmax = ξ =
c

H0

Ω0

(Ω0 − 1)3/2
(11.50)

After that: contraction to the big crunch at θ = 2π.

=⇒ The lifetime of the closed universe is

t =
π

H0

Ω0

(Ω0 − 1)3/2
(11.51)
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k = −1, Matter dominated

Finally, the matter dominated, open case. This case is very similar to the case of k = +1:

For k = −1, the Friedmann equation becomes

dR

dt
= c

(
ζ

R
+ 1

)1/2

(11.52)

where

ζ =
c

H0

Ω0

(1 − Ω0)3/2
(11.53)

Separation of variables gives after a little bit of algebra

R =
ζ

2
(cosh θ − 1)

ct =
ζ

2
(sinh θ − 1)

(11.54)

where the integration was again performed by substitution.

Note: θ here has nothing to do with the coordinate angle θ!
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k = −1, Matter dominated

0.2 0.4 0.6 0.8
Ω

6

7

8

9

10

t 0
/h

 [G
yr

]

To obtain the age of the

universe, note that at the

present time,

cosh θ0 =
2 − Ω0

Ω0

sinh θ0 =
2

Ω0

√

1 − Ω0

(11.55)

(identical derivation as

that leading to Eq. 11.48)

such that

t0 =
1

2H0

Ω0

(1 − Ω0)3/2
· ·
{

2

Ω0

√

1 − Ω0 − ln

(

2 − Ω0 + 2
√

1 − Ω0

Ω0

)}

(11.56)
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Expanding Universe 29

k = −1, Matter dominated

For the matter dominated case, our results from Eqs. (11.47), and (11.54) can be written in form

of the cycloid solution

R = kR (1 − Ck(θ))

ct = kR (θ − Sk(θ))
(11.57)

where θ is called the development angle and where

Sk(θ) =







sin θ

θ

sinh θ

and Ck(θ) =







cos θ for k = +1

1 for k = 0

cosh θ for k = −1

(11.58)

The characteristic radius, R, is given by

R =
c

H0

Ω0/2

(k (Ω0 − 1))3/2
(11.59)

(note typo in Eq. 3.42 of Peacock, 1999).



0.0 0.5 1.0 1.5
ct/2πR

0.1

1.0

10.0

R
(t

)/
R

k=-1

k= 0

k=+1
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AGN Statistics 1

AGN Statistics

AGN Statistics:

We want to understand how AGN develop in time =⇒ perform AGN surveys

according to well understood criteria:

• Redshift limited samples

• Luminosity limited samples

To understand results from surveys, we need to look at the AGN statistics first.
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AGN Statistics 2

Statistics, I

Most important statistics: number counts

Assume AGN have a space density n(r) as a function of distance.

To illustrate, first look at the number of objects of same luminosity, L, (“δ-function luminosity

function”) in an Euclidean space:

dN(r) = n(r)dV = n(r)r2drdΩ (11.60)

such that surface density (AGN at distance r per square degree):

dN(r)

dΩ
= n(r)r2dr (11.61)

Often: flux limited sample: count all sources with F > S, i.e., out to distance

rmax =

(
L

4πS

)1/2

(11.62)

Number of sources detected:

N(> S) =

∫ rmax

0
n(r)r2dr (11.63)

cumulative source distribution as a function of flux
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AGN Statistics 3

Statistics, II

As an example, let’s calculate N(> S) for an uniform space density, n(r) = n0:

N(> S) =

∫ rmax

0
n(r)r2dr =

∫ rmax

0
n0r

2dr =
n0r

3
max

3
=
n0

3

(
L

4πS

)3/2

(11.64)

or

log(N(> S)) = log

(

n0L
3/2

3(4π)3/2

)

− 3

2
log S (11.65)

For a constant source population, the slope in a logN–log S diagram is −3/2.

Disregarding cosmological effects.

When working in magnitudes: m ∝ −2.5 log S =⇒ log S ∝ −0.4m, such that

logN(m) ∝ 0.6m (11.66)

So for a constant space density, number of objects detected increases by a factor 100.6 = 4 per

optical magnitude.

In an optical flux limited sample, 80% of all sources are within 1 mag of the detection limit. . .
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AGN Statistics 4

Statistics, III

The slope of the logN(> S)–log S-relationship for constant density and δ-function luminosity

function is

β = −d logN

d log S
=

3

2
(11.67)

Now include cosmology. Again, for sources with a δ-function luminosity function (=one-to-one

relation between flux and redshift), β can be written

β = −d logN

d log S
= −d log V

d log z
· d log z

d log S
(11.68)

For Ω = 1 and z � 1, Peacock (1999) shows:

d log V

d log z
∼ 1.5√

z
and

d log S

d log z
∼ −(1 + α) (11.69)

for power law source spectra, Fν ∝ ν−α, such that

β =
3

2
· 1

(1 + α)
√
z
<

3

2
(11.70)

The problem: Measurements show β & 1.5, i.e., AGN population is evolving.
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AGN Statistics 5

Surveys

(Strauss, 1999)

Surveys:

1D-surveys: very deep exposures of small patch of sky, e.g. HST Deep Field, Lockman Hole

Survey, Marano Field.

2D-surveys: cover long strip of sky, e.g., CfA-Survey (1.5 × 100◦), 2dF-Survey (“2 degree Field”).

3D-surveys: cover part of the sky, e.g., Sloan Digital Sky Survey.

These surveys attempt to go to certain limit in z or m.



HDF: ∼ 150 ksec/Filter for

4 HST Filters made in

1995 December.

Many galaxies with weird

shapes =⇒
protogalaxies!

Redshifts: z ∈ [0.5, 5.3]

(Fernández-Soto et al.,

1999)

Hubble Deep Field, courtesy

STScI





1998: Hubble Deep Field

South, 10 d of total

observing time!
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X-ray Surveys 1

Deep X-ray Surveys

Chandra/HST Image of Hubble Deep Field North; 500 ksec

Problem of optical surveys: many sources are not AGN

Joint multi-wavelength campaigns allow the measurement of broad-band spectra of

sources in the early universe!
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X-ray Surveys 2

Deep X-ray Surveys

Deep optical surveys: Many foreground objects

=⇒ go into the X-rays, where AGN dominate

=⇒ Deep X-ray Surveys

Review: Brandt & Hasinger (2005)

History:

• Early 1970s: Uhuru and Ariel : strong cosmic X-ray background (CXRB)

• Early 1980s: Einstein satellite (Wolter telescope): 25% of the 1–3% CXRB

resolved into discrete sources, mainly AGN
Sensitivity limit: 3 × 10−14 erg cm−2 s−1

• Early 1990s: ROSAT resolves ∼75% of CXRB into discrete sources
Sensitivity limit: 10−15 erg cm−2 s−1, AGN density: 780–870 per square degree

• Late 1990s: surveys with ASCA and BeppoSAX

• State of the art: Chandra and XMM-Newton Deep Fields.



Lockman Hole: Northern Sky

region with very low NH

=⇒ low interstellar absorption

=⇒ “Window in the sky”

=⇒X-rays: evolution of active

galaxies with z!
XMM-Newton, Hasinger et al.,
2001,
blue: hard X-ray spectrum,
red: soft X-ray spectrum



Chandra Deep Field

South: 1 Msec

(10.8 days) on one

region in Fornax =⇒
Deepest X-ray field

ever. . .

color code: spectral
hardness

& 70% of sources in

deep X-ray surveys are

AGN

in deepest Chandra

fields, AGN density is

≈ 7200 deg−2

(Bauer et al., 2004)

scale: 15′ × 15′; courtesy

NASA/JHU/AUI/R.Giacconi

et al.



COSMOS field:

1.4 Msec

(16.4 days) with

XMM-Newton,

observations from

the IR to the X-rays

are available

color code: spectral
hardness

682 sources

detected

courtesy MPE



Deep XMM-Newton image

of the Marano Field

(IAAT/AIP/MPE)
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X-ray Surveys 7

Deep X-ray Surveys

Sensitivity limits of

the most prominent

X-ray AGN surveys.

Brandt & Hasinger (2005,
Fig. 1)
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X-ray Surveys 8

Deep X-ray Surveys

Distant AGN have

to be very

luminous to be

detectable!

Brandt & Hasinger (2005,
Fig. 3)



I

E
F

CO

D
RI

L

A
I

N

RD
NXAEA

E
SI

I

CM LMVA

AI

AD

R

E

L
GE

11
–4

9

X
-r

ay
S

ur
ve

ys
9

D
ee

p
X

-r
ay

S
ur

ve
ys

A
G

N

Ty
pe

 1
 A

G
N

ROSAT U
DS

C
ha

nd
ra

 D
ee

p 
Fi

el
ds

Ch
an

dr
a 

flu
ct

.

Starburst a
nd norm

al g
alaxies

A
G

N

Ch
an

dr
a 

flu
ct

.

ASCA LSS

C
ha

nd
ra

 D
ee

p 
Fi

el
ds

ChaMP

Starburst a
nd norm

al g
alaxies

B
ra

nd
t&

H
as

in
ge

r
(2

00
5,

F
ig

.3
)

C
on

tr
ib

ut
io

ns
of

di
ffe

re
nt

id
en

tifi
ed

ty
pe

s
of

A
G

N
to

to
ta

ll
og
N

–l
og
S

:
A

G
N

do
m

in
at

e



IEF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

11–50

AGN Evolution 1

AGN Evolution: Observations, I

Surveys show that the local distribution of AGN can be parameterized as

ρ(L) = ρ0

[(
L

L∗

)α

+

(
L

L∗

)β
]−1

(11.71)

with α = 0.3, β = 2.3, ρ0 = 103.6h−3 Gpc−3 and L∗
0.5−2 keV = 1042.8 erg s−1 for

z = 0. At z ∼ 2: L∗ factor 30 larger, find L ∝ (1 + z)3 =⇒ AGN Evolution!

General Ansatz: parameterize AGN density, ρ, as function of emitted power L

and redshift, z. Two extreme cases

ρ(L, z) =

{

f(z)ρ0(L) pure density evolution

ρ0(L/g(z)) pure luminosity evolution
(11.72)

the evolution functions f(z) and g(z) are often parameterized as powers of 1 + z.
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AGN Evolution 2

AGN Evolution: Observations, II

Evolution of

logN–logS-with redshift:

changes at high LX!

(Brandt & Hasinger, 2005, Fig. 7)
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AGN Evolution 3

Observed Space Density

Brandt & Hasinger (comoving AGN space density; 2005, Fig. 8)

X-ray surveys show luminosity evolution:

• peak space density moves to smaller z with smaller LX

• rate of evolution from now to peak is slower for less luminous AGN: less evolution for low LX.

=⇒ if LX traces MBH, then the most massive BH formed first! (“anti-hierarchical AGN evolution”)
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AGN Evolution 4

Observed Space Density

(Richards et al., 2006, Fig. 13)

X-ray fields too small to cover high luminosity quasars =⇒ optical surveys
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AGN Evolution 5

Observed Space Density

Optical surveys such as the

Sloan Digital Sky Survey

(SDSS) also show quasars

to peak at z ∼ 2.

(Richards et al., 2006, Fig. 20)
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AGN Evolution 6

Observed Space Density

SDSS also shows strong

quasar evolution, mainly

density evolution, but

similarly to X-rays data start

to hint also at luminosity

dependent density evolution.

(Evolution of luminosity function slope,
Φ ∝ L−β, Fig. 21 of Richards et al.,
2006)
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AGN and Host Galaxies 1

AGN and Host Galaxies

Evolution models predict large

numbers of dormant BH in local

galaxies. These are indeed found:

The BH mass scales with the

luminosity of host galaxy bulge.

See (Ferrarese & Ford, 2005) for a review.

(Gebhardt et al., 2000, Fig. 2)

log(M•) = (8.37 ± 0.11) − (0.419 ± 0.085)(B0
T + 20.0)

(11.73)
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AGN and Host Galaxies 2

AGN and Host Galaxies

The BH mass scales with the

velocity dispersion of the host

galaxy bulge.

See Ferrarese & Ford (2005) for a review.

Consequence: Black Hole formation

and bulge formation are closely related

to each other
Even though AGN exist in bulge-less galaxies.

(Gebhardt et al., 2000, Fig. 2)

M•
108M�

= (1.66 ± 0.24)
(

σ

200 km s−1

)4.86±0.43

to ∼30% (11.74)
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AGN Formation 1

AGN Formation

Millenium simulation: numerical

simulation of galaxy evolution in a

ΛCDM univers, 10× larger than

anything previously done.
Baseline: semi-analytical evolution

formalism adjusted to yield galaxy

parameters (luminosity-color evolution,

morphology, gas content, BH mass)

consistent with observations. Covers

galaxies down to SMC size, includes AGN

formation and growth.

See Springel et al. (2005) for details.
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AGN Formation 2

AGN Formation

(Springel et al., 2005)

Volume of Millenium simulation too small to contain more than a few quasar candidates.

Here: Evolution of largest mass object, from halo dark matter mass 1.8 × 1010M� at z = 16.7 to now
3.9 × 1012M� in DM, 6.8 × 1010M� normal matter, and a star formation rate of 235M� year−1.



Movie Time: The Millenium Simulation,

� � � � � � � �� � �� �
	 � � � �  	 � � ��� ��� � � ���
�� �� � �� ��
� �� �

(1010 particles; 512 processors, 350000 h (28 clock days) of CPU time, see Springel et al. 2005)

formationmovies/millennium_sim_1024x768.avi


Movie Time: Fly through the Millenium Simulation,

� � � � � � � �� � � � �
	 � � � �  	 � � ��� � �
� � � � �� � �� �

2.5 billion light years; see Springel et al. 2005

formationmovies/millennium_flythru.avi
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AGN Formation 5

AGN Formation

(Hopkins et al., 2006, Fig. 1)

AGN formation and evolution are probably linked to galaxy mergers.



Evolution of a merger in a

80h−1 kpc wide box: blue:

baryonic mass fraction 20%, red:

< 5%.

Point sources shown when quasar

activity would be observable.

(Hopkins et al., 2006, Fig. 2)
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