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Introduction 1

Introduction

AGN are powered by accretion =⇒ need to look at accretion as a physical

mechanism.

Unfortunately, this will have to be somewhat theoretical, but this cannot be avoided. . .

Structure of this chapter:

1. Accretion Luminosity: Eddington luminosity

2. Accretion Disks: Theory

3. Accretion Disks: Confrontation with observations
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Introduction 2
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• T. Padmanabhan, 2001, Theoretical Astrophysics, II. Stars and Stellar

Systems, Cambridge Univ. Press
See introduction to this lecture.

• N.I. Shakura & R. Sunyaev, 1973, Black Holes in Binary Systems.

Observational Appearance. Astron. Astrophys. 24, 337
The fundamental paper, which really started the field.

• J.E. Pringle, 1981, Accretion Disks in Astrophysics, Ann. Rev. Astron.

Astrophys. 19, 137
Concise review of classical accretion disk theory.
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Accretion Luminosity 1

Eddington luminosity, I

M

Assume mass M
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Accretion Luminosity 2

Eddington luminosity, II

M
m

Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.
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Accretion Luminosity 3

Eddington luminosity, III

M
m

S
Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.

At radius r, accretion produces

energy flux S.
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Accretion Luminosity 4

Eddington luminosity, IV

M
m

S
Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.

At radius r, accretion produces

energy flux S.

Important: Interaction between

accreted material and radiation!
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Accretion Luminosity 5

Eddington luminosity, V

Force balance on accreted electrons and protons:
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Accretion Luminosity 6

Eddington luminosity, VI

Fg

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2
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Accretion Luminosity 7

Eddington luminosity, VII

Fg

Frad

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2

Outward force: radiation force:

Frad =
σTS

c
where energy flux S is given by

S =
L

4πr2

where L: luminosity.
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Accretion Luminosity 8

Eddington luminosity, VIII

Fg

Frad

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2

Outward force: radiation force:

Frad =
σTS

c
where energy flux S is given by

S =
L

4πr2

where L: luminosity.

Note: σT ∝ (me/mp)
2, so negligable for protons.

But: strong Coulomb coupling between electrons and protons

=⇒ Frad also has effect on protons!
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Accretion Luminosity 9

Eddington luminosity, IX

Fg

Frad

Accretion is only possible if gravitation dominates:

GMmp

r2
>
σTS

c
=
σT

c
· L

4πr2

and therefore

L < LEdd =
4πGMmpc

σT

or, in astronomically meaningful units

L < 1.3 × 1038 erg s−1 · M
M�

where LEdd is called the Eddington luminosity.

But remember the assumptions entering the derivation: spherically symmetric
accretion of fully ionized pure hydrogen gas.
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Accretion Luminosity 10

Eddington luminosity, X

Characterize accretion process through the accretion efficiency, η:

L = η · Ṁc2

where Ṁ : mass accretion rate (e.g., g s−1 or M� yr−1).

Therefore maximum accretion rate (“Eddington rate”):

ṁ =
LEdd

ηc2
∼ 2 ·

(
M

108M�

)

M� yr−1

(for η = 0.1)
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Accretion Luminosity 11

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k
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Accretion Luminosity 12

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k

Optically thick medium: blackbody radiation

Tb =

(
L

4πR2σSB

)1/4
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Accretion Luminosity 13

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k

Optically thick medium: blackbody radiation

Tb =

(
L

4πR2σSB

)1/4

Optically thin medium: L directly converted into radiation without further

interactions =⇒ mean particle energy

Tth =
GMmp

3kR
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Accretion Luminosity 14

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k

Optically thick medium: blackbody radiation

Tb =

(
L

4πR2σSB

)1/4

Optically thin medium: L directly converted into radiation without further

interactions =⇒ mean particle energy

Tth =
GMmp

3kR

Plugging in numbers for a typical solar mass compact object (NS/BH):

Trad ∼ 1 keV and Tbb ∼ 50 MeV

Accreting objects are broadband emitters in the X-rays and gamma-rays.



CXC/MPE/S. Komossa



NASA/CXC/SAO

Source of matter: probably disrupted stars

=⇒ accreted matter has angular momentum

=⇒ accretion disk forms.
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Accretion Disks 3

Thin Disks, I

R

H

Most important case: thin accretion disks, i.e., vertical thickness, H , much

smaller than radius R:

H � R

=⇒ Requires that radiation pressure is negligable

=⇒ L� LEdd
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Accretion Disks 4

Thin Disks, II

R

H

Thin assumption: no radiation pressure

=⇒ gas pressure must support disk vertically against gravitation:

GM

R2

H

R
=

1

ρ

∣
∣
∣
∣

∂P

∂z

∣
∣
∣
∣
∼ Pc

ρcH

where Pc characteristic pressure, ρc characteristic density.
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Accretion Disks 5

Thin Disks, III

Because the speed of sound is

c2
s =

P

ρ
the condition for vertical support can be written as

GM

R2

H

R
∼ Pc

ρcH
=
c2

s

H

Therefore

c2
s =

GM

R

H2

R2
= v2

φ ·
H2

R2

where vφ =
√

GM/R: Kepler speed.

Since H/R � 1:

cs � vφ

Thin accretion disks are highly supersonic.
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Accretion Disks 6

Thin Disks: Radial Structure

J. Blondin (priv. comm.; calculations for stellar
accretion)

Radial acceleration due to pressure:

1

ρ

∂P

∂R
∼ Pc

ρcR
∼ c2

s

R
∼ GM

R2

H2

R2
� GM

R2

=⇒ radial acceleration due to pressure

negligable compared to

gravitational acceleration

Thin disk: fluid motion is Keplerian

to very high degree of precision.

=⇒ for the radial velocity, vR: vR � vφ
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Accretion Disks 7

Thin Disks: Vertical Structure and Mass Conservation

Amount of mass crossing radius R:

Ṁ = −2πR · Σ · vR
where Σ: surface density of disk,

Σ(R) =

∫

n(r)dz

and where Ṁ : mass accretion rate

Since acceleration ⊥ z

Fz ∝
GM

R2

z

R
∝ z

vertical density profile

n(z) ∝ exp
(

− z

H

)

where H : scale height (depends on details of accretion disk theory).
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Accretion Disks 8

Thin Disks: Angular Momentum Transport, I

Most important question: angular momentum transport

Angular velocity in Keplerian disk:

Ω(R) =

(
GM

R3

)1/2

(“differential rotation”)

=⇒ angular momentum per mass (“specific angular momentum”):

L = R · v = R ·RΩ(R) = R2 Ω(R) ∝ R1/2

=⇒decreases with decreasing R!

Total angular momentum lost when mass moves in unit time from R + dR to R:

dL

dR
= Ṁ · d(R

2Ω(R))

dR
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Accretion Disks 9

Thin Disks: Angular Momentum Transport, II

Since L changes: accreting matter needs to lose angular momentum. This is

done by viscous forces excerting torques:

Force due to viscosity per unit length:

F = νΣ · ∆v = νΣ ·RdΩ
dR

where ν: coefficient of kinematic viscosity

Therefore total torque

G(R) = 2πRF · R = νΣ2πR3

(
dΩ

dR

)

and the net torque acting on a ring is

dG

dR
dR

=⇒This net torque needs to balance change in specific angular momentum in

disk.
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Accretion Disks 10

Thin Disks: Angular Momentum Transport, III

Balancing net torque and angular momentum loss gives:

Ṁ
d(R2Ω)

dR
= − d

dR

(

νΣ2πR3dΩ

dR

)

Insert Ω(R) = (GM/R3)1/2 and integrate:

νΣR1/2 =
Ṁ

3π
R1/2 + const.

const. obtained from no torque boundary condition at inner edge of disk at

R = R∗: dG/dR(R∗) = 0, such that

νΣ =
Ṁ

3π

[

1 −
(
R∗
R

)1/2
]

Therefore the viscous dissipation rate per unit area is

D(R) = νΣ

(

R
dΩ

dR

)2

=
3GMṀ

4πR3

[

1 −
(
R∗
R

)1/2
]
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Accretion Disks 11

Thin Disks: Temperature Profile, I

The viscous dissipation rate was

D(R) = νΣ

(

R
dΩ

dR

)2

=
3GMṀ

4πR3

[

1 −
(
R∗
R

)1/2
]

If disk is optically thick: Thermalization of dissipated energy

=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R)

(disk has two sides!) and therefore

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(
R∗
R

)1/2
]}1/4
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Accretion Disks 12

Thin Disks: Temperature Profile, II

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(
R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(
L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).
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Accretion Disks 13

Thin Disks: Temperature Profile, III

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(
R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(
L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).

Radial dependence of T :

T (R) ∝ R−3/4
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Accretion Disks 14

Thin Disks: Temperature Profile, IV

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(
R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(
L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).

Radial dependence of T :

T (R) ∝ R−3/4

Dependence on mass (note: for NS/BH inner radius R∗ ∝M !):

Tin ∝ (Ṁ/M 2)1/4

=⇒ AGN disks are colder than disks around galactic BH
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Accretion Disks 15

Thin Disks: Emitted Spectrum, I

ν2

ν
1/3 ν

0

exp(−h   /kT)ν

log ν

lo
g 

F

If disk is optically thick, then locally emitted spectrum is black body.

Total emitted spectrum obtained by integrating over disk

Fν =

∫ Rout

R∗

B(T (R)) 2πRdR

Resulting spectrum looks essentially like a stretched black body.
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Accretion Disks 16

Thin Disks: Emitted Spectrum, II

Fe XVII − Fe XXIII

Fe XXV

F
e 

X
X

V
II

Fe
 I 

− 
Fe

 X
V

I

Fe XXVI

Fe
 X

X
IV

Fe species in a disk around a Galactic BH (Davis et al., 2005, Fig. 6)
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Accretion Disks 17

Thin Disks: Emitted Spectrum, III

local BB

metals
H+He

Hubeny et al., 2001, Fig. 13

In reality: accretion disk

spectrum depends on

• elemental composition

(“metallicity”)

• viscosity (“α-parameter”)

• ionization state and

luminosity of disk (Ṁ )

• properties of compact object

and many further parameters

Until today: no really

satisfactory disk model

available.
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Accretion Disks 18

Viscosity

Most important unknown in accretion disk theory: viscosity

even though it dropped out of T (R)!

Earth: viscosity of fluids typically due to molecular interactions (molecular

viscosity).

Kinematic viscosity:

νmol ∼ λmfpcs

where the mean free path

λmfp ∼
1

nσ
∼ 6.4 × 104

(
T 2

n

)

cm

and the speed of sound

cs ∼ 104T 1/2 cm s−1

such that

νmol ∼ 6.4 × 108 T 5/2n−1 cm2 s−1
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Accretion Disks 19

Viscosity

Viscosity important when Reynolds number small (“laminar flow”), where

Re =
inertial force

viscous force
∼ ρRv

ρν
=
Rv

ν

Follows from Navier-Stokes Equations

Using typical accretion disk parameters:

Remol ∼ 2 × 1014

(
M

M�

)1/2(
R

1010 cm

)1/2(
n

1015 cm−3

)(
T

104 K

)−5/2

=⇒ Molecular viscosity is irrelevant for astrophysical disks!

since Re & 103: turbulence =⇒ Shakura & Sunyaev posit turbulent viscosity

νturb ∼ vturb`turb ∼ α cs ·H
where α . 1 and `turb . H typical size for turbulent eddies.
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Accretion Disks 20

Viscosity

R. Müller

Mechanical analogy of MRI: spring in

differentially rotating medium.

Physics of turbulent viscosity is

unknown, however, α prescription

yields good agreement between

theory and observations.

Possible origin: Magnetorotational

instability (MRI): MHD instability

amplifying B-field inhomogeneities

caused by small initial radial

displacements in accretion disk

=⇒ angular momentum transport
(Balbus & Hawley 1991, going back to Velikhov
1959 and Chandrasekhar (1961).



(Hawley & Krolik, 2002)
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Accretion Disks in AGN 1

Accretion Disks in AGN, I

Spectral Energy Distribution of radio-loud and radio-quiet AGN (Elvis et al., 1994)

Big Blue Bump: Excess radiation in ∼UV range =⇒ disk?

IR Bump: Excess radiation in ∼IR range =⇒ dust? (peak T : 2000 K; dust sublimation?)
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Accretion Disks in AGN 2

Accretion Disks in AGN, II

Spectral Energy Distribution of 3C273 (Türler et al., 1999)

Big Blue Bump: Excess radiation in ∼UV range =⇒ disk?

IR Bump: Excess radiation in ∼IR range =⇒ dust? (peak T : 2000 K; dust sublimation?)
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Accretion Disks in AGN 3

IR Bump

mm–optical SED of PG1351+640: dust has wide range of temperatures
(Wilkes, 2004).

IR-Bump: too cold for disk, has substructure =⇒ different emission regions.
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Accretion Disks in AGN 4

UV Bump

In some AGN: extrapolated UV

power law smoothly matches X-ray

continuum.
Remember: fν ∝ ν−α

Break wavelengh between 800 and

1600 Å, in rough agreement with

accretion disk models.

Theory of the break: H-Lyman

edge, possibly smeared by

Comptonization or relativistic

effects.
However: no correlation between UV slope and
BH mass as expected from accretion disk
models?!?

(Shang et al., 2005)
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Accretion Disks in AGN 5

Galactic Black Holes

Energy [keV]

10-4

10-3

10-2

10-1

E
 ×

 p
h 

cm
-2

 s
-1

 k
eV

-1

3 5 10 20

Obs28

Obs29

Obs30
Obs31

LMC X-3, (Wilms et al., 2001)

Problem with AGN: peak of

disk in UV

=⇒ Galactic Black Holes: T is

higher

Find ok agreement between

accretion disk models and

theory.

In general: models with just

T ∝ r−3/4 and no additional

(atomic) physics seem to work

best?!?
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Accretion Disks in AGN 6

Galactic Black Holes

(Davis, Done & Blaes, 2006)

Comparison of

self-consistent accretion

disk model with LMC X-3

data =⇒ good agreement,

although values of α

smaller than expected (fits

find 0.01 < α < 0.1

instead of 0.1–0.8).

Top red line: inferred accretion disk
spectrum without interstellar
absorption.
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