

X-Ray Detectors

5-1

Introduction

A large amount of our understanding of AGN comes from non-optical observations.

- \implies we need to understand how these observations are made to be able to interpret their results.
- \implies Will take a "side trip" into the world of X-ray detectors.

There are two main issues to deal with:

- X-ray Optics
- X-ray Detectors

Earth's Atmosphere

Earth's atmosphere is opaque for all types of EM radiation except for optical light and radio.

Major contributer at high energies: photoabsorption $(\propto E^{-3})$, esp. from oxygen (edge at ~500 eV).

Charles & Seward, Fig. 1.12

 \implies If one wants to look at the sky in other wavebands, one has to go to space!

Introduction

Cassegrain telescope, after Wikipedia

Reminder: Optical telescopes are usually reflectors:

primary mirror (paraboloid) \rightarrow secondary mirror (often flat) \rightarrow detector

Main characteristics of a telescope:

- collecting area (i.e., open area of telescope, $\sim \pi d^2/4$, where d: telescope diameter)
- for small telescopes: angular resolution,

$$\theta = 1.22 \frac{\lambda}{d} \tag{5.1}$$

but in the optical: do not forget the seeing!

Optical telescopes are based on principle that reflection "just works" with metallic surfaces.

Light in glass at glass/air interface: $n = 1/1.6 \Longrightarrow \theta_c \sim 50^\circ \Longrightarrow$ principle behind optical fibers.

Imaging

5 - 6

(5.2)

(5.3)

Optical Imaging, III

X-rays: index of refraction vacuum versus material is (Aschenbach, 1985):

$$n = 1 - N_{\mathsf{A}} \frac{Z}{A} \frac{r_{\mathsf{e}}}{2\pi} \rho \lambda^2 =: 1 - \delta$$
(5.4)

 N_{A} : Avogadro's number, $r_{e} = 2.8 \times 10^{-15}$ m, Z: atomic number, A: atomic weight ($Z/A \sim 0.5$), ρ : density, λ : wavelength (X-rays: $\lambda \sim 0.1-1$ nm).

Critical angle for X-ray reflection:

$$\cos\theta_{\rm c} = 1 - \delta \tag{5.5}$$

Since $\delta \ll 1$, Taylor ($\cos x \sim 1 - x^2/2$):

$$\theta_{\rm c} = \sqrt{2\delta} = 56' \rho^{1/2} \frac{\lambda}{1\,\rm nm}$$
(5.6)

So for $\lambda \sim 1$ nm: $\theta_{c} \sim 1^{\circ}$.

To increase θ_c : need material with high $\rho \implies \text{gold} (XMM-Newton)$ or iridium (Chandra).

Optical Imaging, IV

Reflectivity for Gold

Wolter Telescopes, I

after ESA

Geometric optics: focusing with conic sections.

Wolter Telescopes, II

after ESA

Parabolic system alone: long focal length.

Wolter Telescopes, III

after ESA

Shorten system with combination of parabola and hyperboloid.

Wolter Telescopes, IV

To obtain manageable focal lengths (\sim 10 m), do imaging with telescope using two reflections on a parabolic and a hyperboloidal mirror ("Wolter type I"). (Wolter, 1952, for X-ray microscopes, Giacconi, 1961, for UV- and X-rays).

But: small collecting area ($A \sim \pi r^2 l/f$ where f: focal length)

Wolter Telescopes, V

ESA/XMM

Solution to small collecting area: nested mirrors.

Mirror manufacture, I

Recipe for making an X-ray mirror:

- 1. Produce mirror negative ("Mandrels"): Al coated with Kanigen nickel (Ni+10% phosphorus), super-polished [0.4 nm roughness]).
- 2. Deposit 250 nm Au onto Mandrel
- 3. Deposit 1 mm Ni onto mandrel ("electro-forming", 10 μ m/h)
- 4. Cool Mandrel with liquid N. Au sticks to Nickel
- 5. Verify mirror on optical bench.

Total production time of one mirror: 12 d, for XMM: 3×58 mirrors.

Mirror manufacture, II

Gold plastered mandrel for one of the XMM mirrors before electroforming the Ni shell onto the gold.

ESA picture 96.05.006-070

Mirror manufacture, III

... insertion of Mandrel into electroforming bath

ESA picture 96.12.002-016

Mirror manufacture, IV

... and the mirror is done

ESA picture 96.12.002-093

XMM-Newton

Top of the XMM mirrors: 3 mirror sets, each consisting of 58 mirrors,

- Thickness between 0.47 and 1.07 mm
- Diameter between 306 and 700 mm,
- Masses between 2.35 and 12.30 kg,
- Mirror-Height 600 mm
- Reflecting material: 250 nm Au.

photo: Kayser-Threde

The XMM-Newton Spacecraft (photo: ESA)

Semi-Conductors

Semiconductors: separation of valence band and conduction band \sim 1 eV (=energy of visible light).

Absorption of photon produces

 $N \sim \frac{h\nu}{E_{\text{gap}}}$ (5.7)

electron-hole pairs.

For Si: $E_{gap} = 1.12 \text{ eV}$; 3.61 pairs created per eV photon energy [takes into account collective effects in semiconductor]

Note: band gap small \implies need cooling!

- optical light: \sim 1 electron-hole pair
- X-rays (keV): \sim 1000 electron-hole pairs

Problem: electron-hole pairs recombine immediately in a normal semiconductor \implies in practice, apply voltage to a "pn-junction" to separate electrons and pairs.

X-ray Semiconductor Detectors

Silicon Detectors

Charge Coupled Devices (CCD)

MOS structure with segmented metal layer

CERN Academic Training 97/98 Particle Detectors

Christian Joram

II/39

Backside Illuminated CCDs

Schematic structure of the XMM-Newton EPIC pn CCD.

Problem: Infalling structure has to pass *through* structure on CCD surface \implies loss of low energy response, also danger through destruction of CCD structure by cosmic rays...

Solution: Irradiate the back side of the chip. Deplete whole CCD-volume, transport electrons to pixels via adequate electric field ("backside illuminated CCDs")

XMM-Newton: EPIC-pn CCD

XMM-Newton: Array of individual backside illuminated CCDs on one Silicon wafer \implies requires extreme care during production

at the time of production one of the most complex Silicon structures ever made (diameter: 65.5 mm)

XMM-Newton: EPIC-pn CCD

Backside of the EPIC-pn camera head

XMM-Newton: EPIC-pn CCD

XMM-Newton (EPIC-MOS; Leicester): 7 single CCDs with 600×600 pixels, mounting is adapted to curved focal plane of the Wolter telescope.

5-2

optical CCDs: mesure intensity \implies need *long* exposures X-ray CCDs: measure individual photons \implies need fast readout bright sources: several 1000 photons per second \implies readout in μ s!

In X-rays: spectroscopy possible. Typical resolution reached today:

$$\frac{\Delta E}{E} = 2.355 \sqrt{\frac{3.65 \,\mathrm{eV} \cdot F}{E}} \tag{5.8}$$

with $F \sim 0.1 \Longrightarrow \sim 0.4\%$, so much better than gas detectors.

Energy \propto number N of initial photoelectrons \implies Energy resolution (Poisson statistics!):

$$\frac{\Delta E}{E} \propto \frac{\Delta N}{N} = \frac{N^{1/2}}{N} = \frac{1}{N^{1/2}} \propto E^{-1/2}$$
(5.9)

For both optical and X-rays: sensitivity close to 100%

Si-based CCDs are currently the best available imaging photon detectors for optical and X-ray applications.

Finite resolution of X-ray detectors has major implications for X-ray data analysis. Mathematical description of the X-ray measurement process:

$$n_{\mathsf{ph}}(c) = \int_0^\infty R(c, E) \cdot A(E) \cdot F(E) \, dE$$
(5.10)

where

- $n_{\rm ph}(c)$: source count rate in channel c (counts s⁻¹),
- F(E): photon flux density (ph cm ² s⁻¹ keV⁻¹),
- A(E): effective area (units: cm²),
- R(c, E): detector response (probability to detect photon of energy E in channel c).

Effective Area of the Rossi X-ray Timing Explorer's Proportional Counter Array (Xe gas detector).

Response Matrix of the RXTE-PCA. Note the secondary peaks in the response caused by escaping Xe K β and Xe L α photons.

To analyze data: discretize Eq. (5.10):

$$S_{\mathsf{ph}}(c) = \Delta T \sum_{i=0}^{n_{ch}} A(E_i) R(c, i) F(E_i) \Delta E_i$$
(5.11)

where $N_{ph}(c)$: total source counts in channel c, ΔT : exposure time (s), $xA(E_i)$: effective area in energy band i ("ancilliary response file", ARF), R(c, i): response matrix (RMF), $F(E_i)$: source flux in band (E_i, E_{i+i}) , ΔE_i : width of energy band. Because of background B(c) (counts), what is measured is

$$N_{\rm ph}(c) = S_{\rm ph}(c) + B(c)$$
 (5.12)

So estimated source count rate is

$$\tilde{S}_{ph}(c) = N_{ph}(c) - B(c)$$
 (5.13)

with uncertainty (Poisson!)

$$\sigma \tilde{S}_{\rm ph}(c) = \sqrt{N_{\rm ph}(c)^2 + B(c)^2}$$
 (5.14)

To get physics out of measurement, need to find $F(E_i)$.

Big problem: In general, Eq. (5.11) is not invertible.

$\implies \chi^2$ -minimization approach

Use a model for the source spectrum, $F(E; \mathbf{x})$, where \mathbf{x} vector of parameters (e.g., source flux, power law index, absorbing column,...), and calculate predicted model counts, $M(c; \mathbf{x})$, using Eq. 5.11).

Then form χ^2 -sum:

$$\chi^{2}(\mathbf{x}) = \sum_{c} \frac{\left(\tilde{S}_{\mathsf{ph}}(c) - M(c; \mathbf{x})\right)^{2}}{\sigma \tilde{S}_{\mathsf{ph}}(c)^{2}}$$
(5.15)

Then vary x until χ^2 is minimal and perform statistical test based on χ^2 whether model $F(E; \mathbf{x})$ describes data.

Programs used: XSPEC, ISIS

Point sources: Accreting stellar-mass systems in M101.

Lockman-Hole with *XMM-Newton*: The Universe is full of AGN!

5–33

Aschenbach, B., 1985, Rep. Prog. Phys., 48, 579