

X-ray Continuum Emission and Broad Iron Lines

Introduction

AGN have power law continua.

Purpose of this lecture: investigate physical origin of the continuum emission.

Structure:

- 1. Compton Scattering and Comptonization
- 2. Source of hot electrons
- 3. X-ray Reflection
- 4. Relativistic Broadened Fe K α Lines

Introduction 1

AGN X-Ray Continua

(PG 1416-129: de Kool et al., 1994, Williams et al., 1992, Staubert & Maisack, 1996; NGC 4151: Maisack 1991, 1993)

Note: NGC 4151 not corrected for interstellar absorption.

Spectral shape of AGN very similar to galactic Black Holes \Longrightarrow Same physical mechanism (=Comptonization) responsible!

Thomson Scattering, I

after Rybicki&Lightman, Fig. 3.6

Look at radiation from free electron in response to excitation of electron by an electromagnetic wave $E_0 \sin \omega_0 t$ (pointing in direction of unit-vector ϵ):

Force on charge

$$\mathbf{F} = m_{\mathsf{e}}\dot{\mathbf{v}} = qE_0\sin\omega_0 t\,\boldsymbol{\epsilon} \tag{6.1}$$

This neglects the B-field, i.e., assumes $v \ll c$.

 \Longrightarrow The electron feels an acceleration, $\dot{\mathbf{v}}$, and therefore it radiates!

Thomson Scattering, II

The power radiated by an accelerated charge in direction Θ through the spherical angle $d\Omega$ is given by Larmor's formula:

$$\frac{dP}{d\Omega}(\Theta) = \frac{1}{16\pi^2 c^3 \epsilon_0} q^2 \dot{v}^2 \sin^2 \Theta \tag{6.2}$$

Integrating Eq. (6.2) over 4π sr gives

$$P = \frac{q^2 \dot{v}^2}{6\pi c^3 \epsilon_0} \tag{6.3}$$

For the case the charge is accelerated by an (sinusoidally varying) electric field E(t) one finds after a longish calculation:

$$\frac{dP}{d\Omega} = \frac{q^4 E_0^2}{16\pi^2 m^2 c^3 \epsilon_0} \sin^2 \Theta \qquad \text{and} \qquad P = \frac{q^4 E_0^2}{12\pi c^3 m^2 \epsilon_0} \tag{6.4}$$

Thomson Scattering, III

The incident flux on the electron (i.e., $c \times$ energy density for radiation) is

$$\langle \mathbf{S} \rangle = \frac{c\epsilon_0}{2} E_0^2 \tag{6.5}$$

Define the differential cross section for Thomson scattering, $d\sigma/d\Omega$, such that

$$\frac{dP}{d\Omega} = \langle \mathbf{S} \rangle \frac{d\sigma}{d\Omega} \iff \frac{q^4 E_0^2}{16\pi^2 m^2 c^3 \epsilon_0} \sin^2 \Theta = \frac{c\epsilon_0^2}{2} E_0^2 \frac{d\sigma}{d\Omega}$$
 (6.6)

such that

$$\frac{d\sigma}{d\Omega}\bigg|_{\text{polarized}} = \frac{q^4}{8\pi^2 m^2 c^4 \epsilon_0^2} \sin^2\Theta = r_0^2 \sin^2\Theta \tag{6.7}$$

with the classical electron radius

$$r_0 = \frac{e^2}{4\pi m_e c^2 \epsilon_0} = 2.82 \times 10^{-15} \,\mathrm{m}$$
 (6.8)

Thomson Scattering, IV

The differential cross section $d\sigma/d\Omega$ is the area presented by the electron to a photon that is going to get scattered in direction $d\Omega$.

The total cross section for Thomson scattering, σ_T , is then obtained from the differential cross section by integrating $d\sigma/d\Omega$ from Eq. (6.7) over all angles:

$$P = \int \langle S \rangle \frac{d\sigma}{d\Omega} d\Omega = \langle S \rangle \int \frac{d\sigma}{d\Omega} d\Omega =: \langle S \rangle \, \sigma_{\mathsf{T}} \tag{6.9}$$

Performing the integration yields

$$\sigma_{\rm T} = \frac{8\pi}{3}r_0^2 = \frac{e^4}{6\pi m_{\rm e}^2 \epsilon_0^2 c^4} = 6.652 \times 10^{-25} \,\rm cm^2 \tag{6.10}$$

 $\sigma_{\rm T}$ is also called the Thomson cross section.

Thomson Scattering, V

after Rybicki & Lightman, Fig. 3.7

For linear polarized light: scattered radiation is linearly polarized in direction of incident polarization vector, ϵ , and direction of scattering, \mathbf{n} .

To compute σ for nonpolarized radiation, note:

nonpolarized radiation $=\sum$ polarized beams at

Thus, to scatter nonpolarized radiation propagating in direction ${\bf k}$ into direction ${\bf n}$, need to average two scatterings:

$$\frac{d\sigma}{d\Omega}\Big|_{\text{unpol}} = \frac{1}{2} \left(\frac{d\sigma(\Theta)}{d\Omega} \Big|_{\text{pol}} + \frac{d\sigma(\pi/2)}{d\Omega} \Big|_{\text{pol}} \right)$$
(6.11)

Let $\theta = \angle(\mathbf{k}, \mathbf{n})$ to obtain

$$\left. \frac{d\sigma}{d\Omega} \right|_{\text{unpol}} = \frac{r_0^2}{2} (1 + \cos^2 \theta) = \frac{3\sigma_{\text{T}}}{16\pi} (1 + \cos^2 \theta) \quad \text{and} \int \frac{d\sigma}{d\Omega} d\Omega = \sigma_{\text{T}}$$
 (6.12)

Compton Scattering

Thomson scattering: initial and fi nal photon energy are identical.

But: in QM: light consists of photons

⇒ Scattering: photon changes direction

⇒ Momentum change

⇒ Energy change!

This process is called Compton scattering.

Energy/wavelength change in scattering (see handout):

$$E' = \frac{E}{1 + \frac{E}{m_{e}c^{2}}(1 - \cos\theta)} \sim E\left(1 - \frac{E}{m_{e}c^{2}}(1 - \cos\theta)\right)$$
(6.13)

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta) \tag{6.14}$$

where $h/m_{\rm e}c=2.426\times 10^{-12}\,{\rm m}$ (Compton wavelength).

Averaging over θ , for $E \ll m_e c$:

$$\frac{\Delta E}{E} \approx -\frac{E}{m_{\rm e}c^2} \tag{6.15}$$

E.g., at 6.4 keV, $\Delta E \approx$ 0.2 keV.

The derivation of Eq. (6.13) is most simply done in special relativity using four-vectors. In the following, we will use capital letters for four-vectors and small letters for three-vectors. Furthermore, we will adopt the convention

$$\mathbf{P} \cdot \mathbf{Q} = P_0 Q_0 - P_1 Q_1 - P_2 Q_2 - P_3 Q_3 \tag{6.16}$$

for the product of two four vectors, following, e.g., the convention of Rindler (1991, Introduction to Special Relativity).

The four-momentum of a particle with non-zero rest-mass, m_0 , e.g., an electron, is

$$\mathbf{Q} = m_0 \gamma \begin{pmatrix} c \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} m_0 \gamma c \\ \mathbf{q} \end{pmatrix} \tag{6.17}$$

where ${\bf v}$ is the velocity of the particle and ${\bf q}$ its momentum. As usual, $\gamma=(1-(v/c)^2)^{-1/2}$. The square of ${\bf Q}$ is

$$\mathbf{Q}^2 = m_0^2 \gamma^2 c^2 - m_0^2 \gamma^2 v^2 = m_0^2 c^2 \gamma^2 \left(1 - \left(\frac{v^2}{c^2} \right) \right) = m_0^2 c^2$$
(6.18)

Obviously, Q^2 is relativistically invariant.

In the same spirit, the four-momentum of a photon is

$$\mathbf{P} = \frac{E}{c} \begin{pmatrix} \mathbf{1} \\ \hat{\mathbf{u}} \end{pmatrix} \tag{6.19}$$

where $\hat{\mathbf{u}}$ is an unit-vector pointing into the direction of motion of the photon. Note that for photons

$$\mathbf{P}^2 = \mathbf{0} \tag{6.20}$$

as the photon's rest-mass is zero.

We will now look at the collision between a photon and an electron. We will denote the four-momenta after the collision with primed quantities.

Conservation of four-momentum requires

$$\mathbf{P} + \mathbf{Q} = \mathbf{P}' + \mathbf{Q}' \tag{6.21}$$

We now use a trick from Lightman et al. (1975, Problem Book in Relativity and Gravitation), solving this equation for \mathbf{Q}' and squaring the resulting expression:

$$(\mathbf{P} + \mathbf{Q} - \mathbf{P}')^2 = (\mathbf{Q}')^2 \tag{6.22}$$

Since the collision is elastic, i.e., the rest mass of the electron is not changed by the collision,

$$Q^2 = (Q')^2 (6.23)$$

6-9

furthermore, $\mathbf{P}^2=(\mathbf{P}')^2=0,$ such that

$$\mathbf{P} \cdot \mathbf{Q} - \mathbf{P} \cdot \mathbf{P}' - \mathbf{Q} \cdot \mathbf{P}' = \mathbf{0} \iff \mathbf{P} \cdot \mathbf{P}' = \mathbf{Q} \cdot (\mathbf{P} - \mathbf{P}')$$
 (6.24)

But in the frame where the electron is initially at rest,

$$\mathbf{Q} \cdot (\mathbf{P} - \mathbf{P}') = m_{e}c \left(\frac{E}{c} - \frac{E'}{c}\right) = m(E - E')$$
(6.25)

$$\mathbf{P} \cdot \mathbf{P}' = \frac{E}{c} \frac{E'}{c} \left(1 - \hat{\mathbf{u}} \cdot \hat{\mathbf{u}}' \right) = \frac{EE'}{c^2} (1 - \cos \theta)$$
 (6.26)

where $\theta = \angle(\hat{\mathbf{u}}, \hat{\mathbf{u}}')$. Inserting into Eq. (6.24) and solving for E' gives Eq. (6.13).

Compton Scattering

The proper derivation of cross section is done in quantum electrodynamics.

In the limit of low energies: will find Thomson result, for higher energies: relativistic effects become important.

For unpolarized radiation,

$$\frac{d\sigma_{\text{es}}}{d\Omega} = \frac{3}{16\pi}\sigma_{\text{T}} \left(\frac{E'}{E}\right)^2 \left(\frac{E}{E'} + \frac{E'}{E} - \sin^2\theta\right) \tag{6.27}$$

(Klein-Nishina formula).

Compton Scattering

 $1 \, \text{barn} = 10^{-28} \, \text{m}^2$

Integrating over $d\sigma_{\rm es}/d\Omega$ gives total cross-section:

$$\sigma_{\text{es}} = \frac{3}{4}\sigma_{\text{T}} \left[\frac{1+x}{x^3} \left\{ \frac{2x(1+x)}{1+2x} - \ln(1+2x) \right\} + \frac{1}{2x} \ln(1+2x) - \frac{1+3x}{(1+2x)^2} \right]$$
(6.28)

where $x = E/m_ec^2$.

Energy Exchange

For non-stationary electrons, use previous formulae and Lorentz transform photon into electron's frame of rest (FoR):

1. Lab system ⇒ electron's frame of rest:

$$E_{\text{FoR}} = E_{\text{Lab}} \gamma (1 - \beta \cos \theta) \tag{6.29}$$

- 2. Scattering occurs, gives E'_{FoR} .
- 3. Electron's frame of rest \Rightarrow Lab system:

$$E'_{\mathsf{Lab}} = E'_{\mathsf{FoR}} \gamma (1 + \beta \cos \theta') \tag{6.30}$$

Therefore, if electron is relativistic:

$$E'_{\text{Lab}} \sim \gamma^2 E_{\text{Lab}} \tag{6.31}$$

since (on average) θ , θ' are $\mathcal{O}(\pi/2)$ (beaming!).

Thus: Energy transfer is *very* efficient.

As shown in the following, in Compton scattering the radiation field is also amplified by a factor $\hat{\gamma}$.

We first look at the energy budget of one single scattering.

The total power *emitted* in the frame of rest of the electron is given by

$$\frac{dE'_{\text{FoR}}}{dt_{\text{FoR}}}\bigg|_{\text{em}} = \int c\sigma_{\text{T}} E'_{\text{FoR}} V'(E'_{\text{FoR}}) dE'_{\text{FoR}}$$
(6.32)

where V'(E') is the photon energy density distribution (number of photons per cubic metre with an energy between E' and E' + dE').

This power is Lorentz invariant:

$$\frac{V_{\mathsf{Lab}}(E_{\mathsf{Lab}})dE_{\mathsf{Lab}}}{E_{\mathsf{Lab}}} = \frac{V_{\mathsf{FoR}}(E_{\mathsf{FoR}})dE_{\mathsf{FoR}}}{E_{\mathsf{FoR}}} \tag{6.33}$$

In the "Thomson limit" one assumes that the energy change of the photon in the rest frame of the electron is small,

$$E'_{\mathsf{FoR}} = E_{\mathsf{FoR}} \tag{6.34}$$

(this limit was also used in the derivation of Eq. (6.31)). Furthermore one can show that the power is Lorentz invariant:

$$\frac{dE_{\text{FoR}}}{dt_{\text{FoR}}} = \frac{dE_{\text{Lab}}}{dt_{\text{Lab}}} \tag{6.35}$$

(this follows from the fact that energy and time are both "time-like quantities", i.e., the formulae for the Lorentz transform of energy and time are the same).

Therefore

$$\frac{dE_{\text{Lab}}}{dt_{\text{Lab}}}\bigg|_{\text{em}} = c\sigma_{\text{T}} \int E_{\text{FoR}}^2 \frac{V_{\text{FoR}} dE_{\text{FoR}}}{E_{\text{FoR}}}$$
(6.36)

$$= c\sigma_{\mathsf{T}} \int E_{\mathsf{FoR}}^2 \frac{V_{\mathsf{Lab}} dE_{\mathsf{Lab}}}{E_{\mathsf{Lab}}} \tag{6.37}$$

 \dots Lorentz transforming E_{FoR}

$$= c\sigma_{\mathsf{T}}\gamma^2 \int (1 - \beta\cos\theta)^2 E_{\mathsf{Lab}} V_{\mathsf{Lab}} dE_{\mathsf{Lab}}$$
(6.38)

... averaging over angles ($\langle \cos \theta \rangle = 0$, $\langle \cos^2 \theta \rangle = \frac{1}{3}$)

$$= c\sigma_{\mathsf{T}}\gamma^2 \left(1 + \frac{\beta^2}{3}\right) U_{\mathsf{rad}} \tag{6.39}$$

6-12

where

$$U_{\mathsf{rad}} = \int EV(E)dE \tag{6.40}$$

(initial photon energy density).

To determine the power gain of the photons, we need to subtract the power irradiated onto the electron,

$$\frac{dE_{\mathsf{Lab}}}{dt_{\mathsf{Lab}}}\bigg|_{\mathsf{inc}} = c\sigma_{\mathsf{T}} \int EV(E)dE = \sigma_{\mathsf{T}}cU_{\mathsf{rad}}$$
 (6.41)

Therefore, since

$$\gamma^2 - 1 = \gamma^2 \beta^2 \tag{6.42}$$

the net power gain of the photon field is

$$\frac{P_{\text{compt}}}{dt} = \frac{dE_{\text{Lab}}}{dt} \bigg|_{\text{em}} - \frac{dE_{\text{Lab}}}{dt} \bigg|_{\text{inc}}$$
(6.43)

$$= \frac{4}{3}\sigma_{\mathsf{T}}c\gamma^2\beta^2 U_{\mathsf{rad}} \tag{6.44}$$

Amplifi cation factor,

As shown before, in the electron frame of rest,

$$\frac{\Delta E}{E} = -\frac{E}{m_{\rm e}c^2} \tag{6.15}$$

Assuming a thermal (Maxwell) distribution of electrons (i.e., they're not at rest), using the equations from the previous slides one can show that the relative energy change is given by

$$\frac{\Delta E}{E} = \frac{4kT - E}{m_{\bullet}c^2} = A \tag{6.45}$$

where A is the Compton amplification factor.

Thus:

 $E \lesssim 4kT_{\rm e}$ \Longrightarrow Photons gain energy, gas cools down.

 $E \gtrsim 4kT_{\rm e}$ \Longrightarrow Photons loose energy, gas heats up.

Amplifi cation factor, I

In reality, photons will scatter more than once before leaving the hot electron medium.

The *total* relative energy change of photons by traversal of a hot ($E \ll kT_{\rm e}$) medium with electron density $n_{\rm e}$ and size ℓ is then approximately

$$(\text{rel. energy change } y) = \frac{\text{rel. energy change}}{\text{scattering}} \times (\text{\# scatterings})$$
(6.46)

The number of scatterings is $\max(\tau_e, \tau_e^2)$, where $\tau_e = n_e \sigma_T \ell$ ("optical depth"), such that

$$y = \frac{4kT_{\text{e}}}{m_{\text{e}}c^2} \max(\tau_{\text{e}}, \tau_{\text{e}}^2)$$
 (6.47)

"Compton y-Parameter"

Spectral shape, I

Photon spectra can be found by analytically solving the "Kompaneets equation", but this is very difficult.

Approximate spectral shape from the following arguments:

After k scatterings, the energy of a photon with initial energy E_i is approximately

$$E_k = E_i A^k \tag{6.48}$$

But the probability to undergo k scatterings in a cloud with optical depth τ_e is $p_k(\tau_e) = \tau_e^k$ (follows from theory of random walks, note that the mean free path is $\ell = 1/\tau_e$).

Therefore, if there are $N(E_{\rm i})$ photons initially, then the number of photons emerging at energy E_k is

$$N(E_k) \sim N(E_i) A^k \sim N(E_i) \left(\frac{E_k}{E_i}\right)^{-\alpha}$$
 with $\alpha = -\frac{\ln \tau_e}{\ln A}$ (6.49)

Comptonization produces power-law spectra.

General solution: Possible via the Monte Carlo method.

Spectral shape, III

Spectral shape, IV

Spectral shape, V

Spectral shape, VI

Spectral shape, VII

Spectral shape, VIII

Spectral shape, IX

Monte Carlo simulation shows: Spectrum is ⇒ Power law with exponential cutoff (here: with additional "Wien hump", see next slide)

Spectral shape, X

Sphere with $kT_{\rm e}=$ 0.7 $m_{\rm e}c^2$ (\sim 360 keV), seed photons come from center of sphere.

 $y \ll$ 1: pure power-law. y < 1: power-law with exponential cut-off $y \gg$ 1: "Saturated Comptonization".

Saturated Comptonization has never been observed.

Galactic Black Holes

Fritz, et al., 2006

Fit of a *Comptonization* model to *RXTE/INTEGRAL* data from the galactic black hole Cygnus X-1.

$$kT_{
m soft}=$$
 1.21 keV, $au_{
m e}=$ 1.09, $kT_{
m e}\sim$ 100 keV

Model works extremely well ⇒
Comptonization seems to explain
the data.

Note the presence of a Compton reflection hump (evidence of close vicinity of hot electrons and only mildly ionized material)

$\mathsf{K}lpha$ Line Diagnostics

AGN X-Ray Spectrum:

• Comptonization of soft X-rays from accretion disk in hot corona ($T \sim 10^8 \, \mathrm{K}$): power law continuum.

AGN X-Ray Spectrum:

- Comptonization of soft X-rays from accretion disk in hot corona ($T \sim 10^8 \, \mathrm{K}$): power law continuum.
- Thomson scattering of power law photons in disk: Compton Reflection Hump

AGN X-Ray Spectrum:

- Comptonization of soft X-rays from accretion disk in hot corona ($T \sim 10^8 \, \mathrm{K}$): power law continuum.
- Thomson scattering of power law photons in disk: Compton Reflection Hump
- Photoabsorption of power law photons in disk: fluorescent Fe K α Line at \sim 6.4 keV

Total observed line profile affected by

• grav. Redshift

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift
- emissivity profile

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift
- emissivity profile
- spin of black hole

MCG-6-30-15

MCG-6-30-15 (z=0.008): first AGN with relativistic disk line

Tanaka et al. (1995): time averaged ASCA spectrum: line skew symmetric

⇒ Schwarzschild black hole.

Iwasawa et al. (1996): "deep minimum state": extremely broad line

Refer Black Hole.

Later confirmed with BeppoSAX (Guainazzi et al., 1999) and RXTE (Lee et al., 1999).

Broad Lines with ASCA

(Nandra et al., 1997, Fig. 4b)

(Lubiński & Zdziarski, 2001, Fig. 2a)

ASCA: Average Seyfert Fe K α profile contains a narrow core and a red and blue wings, but they are much weaker than MCG-6-30-15.

Best case: MCG-6-30-15

MCG-6-30-15, II

pure PL fit

Better modeling of soft excess and reflection \Longrightarrow Fe K α line has extreme width and skewed profile.

Components of the fi nal fi t. \Longrightarrow Line emissivity is strongly concentrated towards the inner edge of the disk ($\epsilon \propto r^{-4.6}$; cannot be explained with standard α -disk)

(*XMM-Newton*, June 2000, 100 ksec; Wilms et al., 2001)

MCG-6-30-15, III

2001 July/August: 315 ksec observation (Fabian et al., 2002)

- Strong narrow line
- broad line clearly present
- ullet emissivity profile very steep for radii close to $r_{
 m in}$

 $I_{\rm Fe~K} \propto r^{-5.5\pm0.3}$ for $r<6.1^{+0.8}_{-0.5}r_{\rm g}$, $\propto r^{-2.7\pm0.1}$ outside that; Fabian & Vaughan (2003); confi rms Wilms et al. (2001)

Fabian et al. (2002)

Other Sources

(Iwasawa, Miniutti & Fabian, 2004, Figs. 3,4)

Line profile variability in NGC 3516 \Longrightarrow Corotating flare? (7 $r_{\rm g} \lesssim r \lesssim$ 16 $r_{\rm g}$)
If interpretation is pushed further, gives $M \sim (1...5) \times 10^7 \, M_{\odot}$.

Other Sources

(Porquet & Reeves, 2003, Fig. 3)

XMM data from 2001

(Matt et al., 2005, Fig. 1) comparison 2003 vs. 2001 data

Q0056-363 (broad line radio-quiet quasar, $L_X > 10^{45} \, \mathrm{erg \, s^{-1}}$): Fe K α has FWHM 24500 km s⁻¹, EW 275 eV

Q0056-363 is highest luminosity radio-quiet QSO with broad Fe K α line.

Other Sources

(Longinotti et al., 2003)

IRAS 13349+2436:

- Model either 2 broad emission lines or
- relativistic line from Fe xxIII/xxIV plus narrow absorption feature

Line shape can be rather complex!

Other examples include blueshifted lines, e.g., in Mkn 205 (Reeves et al., 2001) or Mkn 766.

Absorption or Lines?

NLSy1: Strong absorption or a relativistic line fron a reflection dominated spectrum both describe the data equally well!

Similar results have been found by Pounds et al. in a variety of sources...

But: strong absorption models contradict observations where data >10 keV available.

Debated Cases 1

Narrow Lines

(NGC 4258; Reynolds et al. 2004)

The majority of Seyfert galaxies and QSOs do *not* show evidence for broad Fe $K\alpha$ lines!

Narrow Lines 1

Narrow Lines

The majority of Seyfert galaxies and QSOs do *not* show evidence for broad Fe $K\alpha$ lines!

statistics for PG-QSO: 20/38 show Fe K α line, of these 3 have broad line (Jiménez-Bailón et al., 2005)

Bianchi et al. (2004, Fig. 4)
[Sample of Seyferts with simultaneous BeppoSAX observations.]

Narrow Lines 2

Conclusions, I

Relativistically broadened Fe K α lines clearly do exist in a variety of different AGN

We need to rethink the details of the accretion process and the accretion geometry close to black hole:

Energy extraction for extremely broad lines?

Coupling BH – disk, structure of the inner disk (no torque condition?, structure of the infall region,...)

"Lamppost model"?

(Petrucci & Henri, 1997; Martocchia, Matt & Karas, 2002; Miniutti & Fabian, 2004)

⇒ X-rays focused down from the jet base?

⇒ If true, is continuum Comptonization?

Fender et al. (2004), Markoff, Nowak & Wilms (2005) for galactic BHs

Conclusions

Conclusions, II

To be successful, models will have to consider:

- Broad Fe K α lines are rare:
 - Truncated Disks? e.g., invoked by Zdziarski et al. (1999) to explain $\Omega/2\pi$ - Γ -correlation
 - Disk ionization (but needs fine tuning!)
 - And what about the Unified Model?
 Is the viewing angle really edge on?
- Narrow lines are ubiquitous:
 - Are they formed in the torus?

 but narrow lines often have FWHM \sim 4000-7000 km s⁻¹ \implies too large for torus! (expect \sim 760 km s⁻¹(M_8/r_{pc})^{1/2})
 - Do they originate in the BLR or an ionized disk?

...and we should not forget the observational constraints: Strong Fe K α variability \Longrightarrow we need a larger collecting area (XEUS!)

Conclusions

The Future

(Comastri, Brusa & Civano, 2004, *Chandra*) CXO J123716.7+621733 (CDF-N; z=1.146)

Broad Fe K α lines already present in high-z universe!

Bianchi, S., Matt, G., Balestra, I., Guainazzi, M., & Perola, G. C., 2004, A&A, 422, 65

Boller, T., Tanaka, Y., Fabian, A., Brandt, W. N., Gallo, L., Anabuki, N., Haba, Y., & Vaughan, S., 2003, MNRAS, 343, L89

Comastri, A., Brusa, M., & Civano, F., 2004, MNRAS, 351, L9

Fabian, A. C., Miniutti, G., Gallo, L., Boller, T., Tanaka, Y., Vaughan, S., & Ross, R. R., 2004, MNRAS, 353, 1071

Fabian, A. C., et al., 2002, MNRAS, 335, L1

Guainazzi, M., et al., 1999, A&A, 341, L27

Iwasawa, K., et al., 1996, MNRAS, 282, 1038

Iwasawa, K., Miniutti, G., & Fabian, A. C., 2004, MNRAS, 355, 1073

Jiménez-Bailón, E., Piconcelli, E., Guainazzi, M., Schartel, N., Rodríguez-Pascual, P. M., & Santos-Lleó, M., 2005, A&A, 435, 449

Lee, J. C., Fabian, A. C., Brandt, W. N., Reynolds, C. S., & Iwasawa, K., 1999, MNRAS, 310, 973

Longinotti, A. L., Cappi, M., Nandra, K., Dadina, M., & Pelletrini, S., 2003, A&A, 410, 471

Lubiński, P., & Zdziarski, A. A., 2001, MNRAS, 323, L37

Markoff, S., Nowak, M. A., & Wilms, J., 2005, ApJ, 635, 1203

Martocchia, A., Matt, G., & Karas, V., 2002, A&A, 383, L23

Matt, G., Porquet, D., Bianchi, S., Falocco, S., Maiolino, R., Reeves, J. N., & Zappacosta, L., 2005, A&A, 435, 867

Miniutti, G., & Fabian, A. C., 2004, MNRAS, 349, 1435

Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yagoob, T., 1997, ApJ, 477, 602

Petrucci, P. O., & Henri, G., 1997, A&A, 326, 99

Porquet, D., & Reeves, J. N., 2003, A&A, 408, 119

Reeves, J. N., Turner, M. J. L., Pounds, K. A., O'Brien, P. T., Boller, T., Ferrando, P., Kendziorra, E., & Vercellone, S., 2001, A&A, 365, L134

Streblyanska, A., Hasinger, G., Finoguenov, A., Barcons, X., Mateos, S., & Fabian, A. C., 2005, A&A, 432, 395