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Zoo: BL Lac and OVV 1

BL Lac and OVVs

(Miller & Hawley, 1977, Fig. 1)

Most AGN show continuum

variability (see later), but some

show fast, large amplitude

variability: blazars.

Subclasses:

• Optically Violent Variables:

OVVs: ∆m & 0.1 mag.

• BL Lac Objects: after prototype

BL Lacertae (originally classified

as a star, mB = 14–16 mag):

virtual absence of emission lines

above continuum
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Zoo: BL Lac and OVV 2

BL Lac and OVVs

(Vermeulen et al., 1995, “When is BL Lac not a BL Lac?”, Fig. 3)

In weak phases, BL Lac

shows a spectrum

Fν ∝ ν−1.7 (strongly

polarized, synchrotron

radiation) and broad

emission lines =⇒
typical AGN continuum!

=⇒There seems to be a continuum between Seyferts, QSOs, and Blazars =⇒
Same physics? =⇒ Unification.

(W. Keel, priv. comm.)

Summary of optical spectra of different AGN types
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Accretion Disks in AGN 1

Accretion Disks in AGN, I

Spectral Energy Distribution of radio-loud and radio-quiet AGN (Elvis et al., 1994)

Big Blue Bump: Excess radiation in ∼UV range =⇒ disk?

IR Bump: Excess radiation in ∼IR range =⇒ dust? (peak T : 2000 K; dust sublimation?)
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Accretion Disks in AGN 2

Accretion Disks in AGN, II

Spectral Energy Distribution of 3C273 (Türler et al., 1999)

Big Blue Bump: Excess radiation in ∼UV range =⇒ disk?

IR Bump: Excess radiation in ∼IR range =⇒ dust? (peak T : 2000 K; dust sublimation?)
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Accretion Disks in AGN 3

IR Bump

mm–optical SED of PG1351+640: dust has wide range of temperatures
(Wilkes, 2004).

IR-Bump: too cold for disk, has substructure =⇒ different emission regions.
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Accretion Disks in AGN 4

UV Bump

In some AGN: extrapolated UV

power law smoothly matches X-ray

continuum.
Remember: fν ∝ ν−α

Break wavelengh between 800 and

1600 Å, in rough agreement with

accretion disk models.

Theory of the break: H-Lyman

edge, possibly smeared by

Comptonization or relativistic

effects.
However: no correlation between UV slope and
BH mass as expected from accretion disk
models?!?

(Shang et al., 2005)
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Accretion Disks in AGN 5

Galactic Black Holes

Energy [keV]

10-4

10-3

10-2

10-1

E
 ×

 p
h 

cm
-2

 s
-1

 k
eV

-1

3 5 10 20

Obs28
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Obs31

LMC X-3, (Wilms et al., 2001)

Problem with AGN: peak of

disk in UV

=⇒ Galactic Black Holes: T is

higher

Find ok agreement between

accretion disk models and

theory.

In general: models with just

T ∝ r−3/4 and no additional

(atomic) physics seem to work

best?!?
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Accretion Disks in AGN 6

Galactic Black Holes

(Davis, Done & Blaes, 2006)

Comparison of

self-consistent accretion

disk model with LMC X-3

data =⇒ good agreement,

although values of α

smaller than expected (fits

find 0.01 < α < 0.1

instead of 0.1–0.8).

Top red line: inferred accretion disk
spectrum without interstellar
absorption.

4–32
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X-Ray Detectors

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

5–2

Introduction 1

Introduction

A large amount of our understanding of AGN comes from non-optical

observations.

=⇒we need to understand how these observations are made to be able to

interpret their results.

=⇒Will take a “side trip” into the world of X-ray detectors.

There are two main issues to deal with:

• X-ray Optics

• X-ray Detectors
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Introduction 2

Earth’s Atmosphere

Charles & Seward, Fig. 1.12

Earth’s atmosphere

is opaque for all

types of EM

radiation except for

optical light and

radio.

Major contributer at

high energies:

photoabsorption

(∝ E−3), esp. from

oxygen (edge at

∼500 eV).

=⇒ If one wants to look at the sky in other wavebands, one has to go to space!
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Imaging 1

Optical Imaging, I

Cassegrain telescope, after Wikipedia

Reminder: Optical telescopes are usually reflectors:

primary mirror (paraboloid) → secondary mirror (often flat) → detector

Main characteristics of a telescope:

• collecting area (i.e., open area of telescope, ∼ πd2/4, where d: telescope diameter)

• for small telescopes: angular resolution,

θ = 1.22
λ

d
(5.1)

but in the optical: do not forget the seeing!
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Imaging 2

Optical Imaging, II

Optical telescopes are based on principle that reflection “just works” with metallic

surfaces.

1α

2α

1θ

n2 n1

n1

<

Snell’s law of refraction:
sin α1

sin α2
=

n2

n1
= n (5.2)

where n index of refraction, and α1,2 angle wrt.

surface normal. If n ≫ 1: Total internal reflection

Total reflection occurs for α2 = 90◦, i.e. for

sin α1,c = n ⇐⇒ cos θc = n (5.3)

with the critical angle θc = π/2 − α1,c.

Clearly, total reflection is only possible for n < 1.

Light in glass at glass/air interface: n = 1/1.6 =⇒ θc ∼ 50◦
=⇒ principle behind optical fibers.
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Imaging 3

Optical Imaging, III

X-rays: index of refraction vacuum versus material is (Aschenbach, 1985):

n = 1 − NA
Z

A

re

2π
ρλ2

=: 1 − δ (5.4)

NA: Avogadro’s number, re = 2.8 × 10−15 m, Z: atomic number, A: atomic weight (Z/A ∼ 0.5), ρ: density,
λ: wavelength (X-rays: λ ∼ 0.1–1 nm).

Critical angle for X-ray reflection:

cos θc = 1 − δ (5.5)

Since δ ≪ 1, Taylor (cos x ∼ 1 − x2/2):

θc =

√
2δ = 56′ρ1/2 λ

1 nm
(5.6)

So for λ ∼ 1 nm: θc ∼ 1◦.

To increase θc: need material with high ρ

=⇒ gold (XMM-Newton) or iridium (Chandra).
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Imaging 4

Optical Imaging, IV

0 5 10 15 20

Photon Energy [keV]

0.0

0.2
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1.0

R
ef

le
ct

iv
ity 0.5deg

0.4deg

0.2deg

1deg

Reflectivity for Gold

X-rays: Total

reflection only

works in the soft

X-rays and only

under grazing

incidence =⇒
grazing incidence

optics.

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

5–10

Imaging 8

Wolter Telescopes, IV

Paraboloid

Incident
paraxial

radiation

Hyperboloid

To obtain manageable focal lengths (∼ 10 m), do imaging with telescope using

two reflections on a parabolic and a hyperboloidal mirror (“Wolter type I”).

(Wolter, 1952, for X-ray microscopes, Giacconi, 1961, for UV- and X-rays).

But: small collecting area (A ∼ πr2l/f where f : focal length)
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Imaging 9

Wolter Telescopes, V

ESA/XMM

Solution to small collecting area: nested mirrors.
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Imaging 11

Mirror manufacture, I

Recipe for making an X-ray mirror:

1. Produce mirror negative (“Mandrels”): Al coated with Kanigen nickel (Ni+10% phosphorus),

super-polished [0.4 nm roughness]).

2. Deposit 250 nm Au onto Mandrel

3. Deposit 1 mm Ni onto mandrel (“electro-forming”, 10µm/h)

4. Cool Mandrel with liquid N. Au sticks to Nickel

5. Verify mirror on optical bench.

Total production time of one mirror: 12 d, for XMM: 3×58 mirrors.
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Imaging 15

XMM-Newton

Top of the XMM mirrors:

3 mirror sets, each consisting of

58 mirrors,

• Thickness between 0.47

and 1.07 mm

• Diameter between 306 and

700 mm,

• Masses between 2.35 and

12.30 kg,

• Mirror-Height 600 mm

• Reflecting material: 250 nm

Au.

photo: Kayser-Threde
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X-ray Semiconductor Detectors 1

Semi-Conductors

e−

fE 

Conduction band

Hole

E

en
er

gy
 g

ap

Space

Valence band

Semiconductors: separation of

valence band and conduction band

∼1 eV (=energy of visible light).

Absorption of photon produces

N ∼
hν

Egap
(5.7)

electron-hole pairs.
For Si: Egap = 1.12 eV; 3.61 pairs created per eV
photon energy [takes into account collective effects
in semiconductor]

Note: band gap small =⇒ need cooling!

• optical light: ∼1 electron-hole pair
• X-rays (keV): ∼1000 electron-hole pairs

Problem: electron-hole pairs recombine immediately in a normal semiconductor

=⇒ in practice, apply voltage to a “pn-junction” to separate electrons and pairs.

Silicon Detectors

h Charge Coupled Devices (CCD)

n

p

SiO2

Metal strips
(poly-slicon)

xd<10 i m

-P(VG)

VC

VG

MOS structure with  segmented metal layer

→→ all pixels are readout via
one (few) output node(s)

→→ very few electronic
channels but long
readout time!

collect free
electrons in a
potential well, ca.
1µm below SiO2
layer

gate strips

p stops

lin
ea

r 
C

C
D

readout

Charge transport by
periodic change of

gate voltage triplets (φφ11,,φφ22,,φφ33))


