

(PG 1416-129: de Kool et al., 1994, Williams et al., 1992, Staubert \& Maisack, 1996; NGC 4151: Maisack 1991, 1993)

Spectral shape of AGN very similar to galactic Black Holes \Longrightarrow Same physical mechanism (=Comptonization) responsible!

Note: NGC 4151 not corrected for interstellar absorption.

AGN X-Ray Continua

The power radiated by an accelerated charge in direction Θ through the spherical angle $d \Omega$ is given by Larmor's formula:

$$
\begin{equation*}
\frac{d P}{d \Omega}(\Theta)=\frac{1}{16 \pi^{2} c^{3} \epsilon_{0}} q^{2} \dot{v}^{2} \sin ^{2} \Theta \tag{6.2}
\end{equation*}
$$

Integrating Eq. (6.2) over 4π sr gives

$$
\begin{equation*}
P=\frac{q^{2} \dot{v}^{2}}{6 \pi c^{3} \epsilon_{0}} \tag{6.3}
\end{equation*}
$$

For the case the charge is accelerated by an (sinusoidally varying) electric field $E(t)$ one finds after a longish calculation:

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{q^{4} E_{0}^{2}}{16 \pi^{2} m^{2} c^{3} \epsilon_{0}} \sin ^{2} \Theta \quad \text { and } \quad P=\frac{q^{4} E_{0}^{2}}{12 \pi c^{3} m^{2} \epsilon_{0}} \tag{6.4}
\end{equation*}
$$

Compton Scattering

The differential cross section $d \sigma / d \Omega$ is the area presented by the electron to a photon that is going to get scattered in direction $d \Omega$.
The total cross section for Thomson scattering, σ_{T}, is then obtained from the differential cross section by integrating $d \sigma / d \Omega$ from Eq. (6.7) over all angles:

$$
\begin{equation*}
P=\int\langle S\rangle \frac{d \sigma}{d \Omega} d \Omega=\langle S\rangle \int \frac{d \sigma}{d \Omega} d \Omega=:\langle S\rangle \sigma_{T} \tag{6.9}
\end{equation*}
$$

Performing the integration yields

$$
\begin{equation*}
\sigma_{\mathrm{T}}=\frac{8 \pi}{3} r_{0}^{2}=\frac{e^{4}}{6 \pi m_{\mathrm{e}}^{2} \epsilon_{0}^{2} c^{4}}=6.652 \times 10^{-25} \mathrm{~cm}^{2} \tag{6.10}
\end{equation*}
$$

σ_{T} is also called the Thomson cross section.

Thomson Scattering,

after Rybicki \& Lightman, Fig. 3.7

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{\text {unpol }}=\frac{1}{2}\left(\left.\frac{d \sigma(\Theta)}{d \Omega}\right|_{\mathrm{pol}}+\left.\frac{d \sigma(\pi / 2)}{d \Omega}\right|_{\mathrm{pol}}\right) \tag{6.11}
\end{equation*}
$$

Let $\theta=\angle(\boldsymbol{k}, \boldsymbol{n})$ to obtain

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{\text {unpol }}=\frac{r_{0}^{2}}{2}\left(1+\cos ^{2} \theta\right)=\frac{3 \sigma_{T}}{16 \pi}\left(1+\cos ^{2} \theta\right) \quad \text { and } \int \frac{d \sigma}{d \Omega} d \Omega=\sigma_{T} \tag{6.12}
\end{equation*}
$$

E, p

Thomson scattering: initial and final photon
energy are identical.
But: in QM: light consists of photons
\Longrightarrow Scattering: photon changes direction
\Longrightarrow Momentum change
\Longrightarrow Energy change!
This process is called Compton scattering.
Energy/wavelength change in scattering (see handout):

$$
\begin{align*}
E^{\prime} & =\frac{E}{1+\frac{E}{m_{\mathrm{e}} c^{2}}}(1-\cos \theta) \tag{6.13}
\end{align*} E\left(1-\frac{E}{m_{\mathrm{e}} c^{2}}(1-\cos \theta)\right) .
$$

where $h / m_{\mathrm{e}} c=2.426 \times 10^{-12} \mathrm{~m}$ (Compton wavelength).
Averaging over θ, for $E \ll m_{\mathrm{e}} c$:

$$
\frac{\Delta E}{E} \approx-\frac{E}{m_{\mathrm{e}} c^{2}}
$$

E.g., at $6.4 \mathrm{keV}, \Delta E \approx 0.2 \mathrm{keV}$.

Compton Scattering

The derivation of Eq. (6.13) is most simply done in special relativity using four-vectors. In the following, we will use capital letters for four-vectors and small letters for
three-vectors. Furthermore, we will sdopt the cone in specia
for the product of two four vectors, following, e.g., the convention of Rindler (1991, Introduction to Special Relativity).
The four-momentum of a particle with non-zero rest-mass, m_{0}, e.g., an electron, is

$$
Q=m_{0 \gamma}\binom{c}{v}=\binom{m_{0} \gamma c}{q}
$$

where v is the velocity of the particle and q its momentum. As usual, $\gamma=\left(1-(v / c)^{2}\right)^{-1 / 2}$. The square of Q is

$$
Q^{2}=m_{0}^{2} \gamma^{2} c^{2}-m_{0}^{2} \gamma^{2} v^{2}=m_{0}^{2} c^{2} \gamma^{2}\left(1-\left(\frac{v^{2}}{c^{2}}\right)\right)=m_{0}^{2} c^{2}
$$

Obviously, Q^{2} is relativistically invariant.
In the same spirit, the four-momentum of a photon is

$$
P=\frac{E}{c}\binom{1}{\hat{u}}
$$

where \hat{u} is an unit-vector pointing into the direction of motion of the photon. Note that for photons
$P^{2}=0$
as the photon's rest-mass is zero.
We will now look at the collision between a photon and an electron. We will denote the four-momenta after the collision with primed quantities.
Conservation of four-momentum requires

$$
P+Q=P^{\prime}+Q^{\prime}
$$

We now use a trick from Lightman et al. (1975, Problem Book in Relativity and Gravitation), solving this equation for Q^{\prime} and squaring the resulting expression:

$$
\left(P+Q-P^{\prime}\right)^{2}=\left(Q^{\prime}\right)^{2}
$$

Since the collision is elastic, i.e., the rest mass of the electron is not changed by the collision,
furthermore, $\boldsymbol{P}^{2}=\left(\boldsymbol{P}^{\prime}\right)^{2}=0$, such that
But in the frame where the electron is initially at rest.

$$
\begin{aligned}
Q \cdot\left(\boldsymbol{P}-\boldsymbol{P}^{\prime}\right) & =m_{\mathrm{e}}\left(\left(\frac{E}{c}-\frac{E^{\prime}}{c}\right)=m\left(E-E^{\prime}\right)\right. \\
P \cdot \boldsymbol{P}^{\prime} & =\frac{E}{c} \frac{E^{\prime}}{c}\left(1-\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{u}}^{\prime}\right)=\frac{E E^{\prime}}{c^{2}}(1-\cos \theta)
\end{aligned}
$$

Integrating over $d \sigma_{\text {es }} / d \Omega$ gives total cross-section:

$$
\sigma_{\text {es }}=\frac{3}{4} \sigma_{\mathrm{T}}\left[\frac{1+x}{x^{3}}\left\{\frac{2 x(1+x)}{1+2 x}-\ln (1+2 x)\right\}+\frac{1}{2 x} \ln (1+2 x)-\frac{1+3 x}{(1+2 x)^{2}}\right]
$$

where $x=E / m_{\mathrm{e}} c^{2}$
Compton Scattering

Energy Exchange

For non-stationary electrons, use previous formulae and Lorentz transform photon into electron's frame of rest (FoR):

1. Lab system \Rightarrow electron's frame of rest:

$$
\begin{equation*}
E_{\mathrm{FoR}}=E_{\mathrm{Lab}} \gamma(1-\beta \cos \theta) \tag{6.29}
\end{equation*}
$$

2. Scattering occurs, gives $E_{\text {FoR }}^{\prime}$.
3. Electron's frame of rest \Rightarrow Lab system:

$$
\begin{equation*}
E_{\mathrm{Lab}}^{\prime}=E_{\mathrm{FoR}}^{\prime} \gamma\left(1+\beta \cos \theta^{\prime}\right) \tag{6.30}
\end{equation*}
$$

Therefore, if electron is relativistic:

$$
\begin{equation*}
E_{\mathrm{Lab}}^{\prime} \sim \gamma^{2} E_{\mathrm{Lab}} \tag{6.31}
\end{equation*}
$$

since (on average) θ, θ^{\prime} are $\mathcal{O}(\pi / 2)$ (beaming!).
Thus: Energy transfer is very efficient.

As shown in the following, in Compton scattering the radiation field is also amplified by a factor γ^{2}.
We first look at the energy budget of one single scattering.
The total power emitted in the frame of rest of the electron is given by

$$
\left.\frac{d E_{\text {or }}^{\prime}}{d t_{\text {FRR }}}\right|_{\mathrm{em}}=\int c \sigma_{\mathrm{T}} E_{\mathrm{FOR}}^{\prime} V^{\prime}\left(E_{\mathrm{FoR}}^{\prime}\right) d E_{\mathrm{FOR}}^{\prime}
$$

where $V^{\prime}\left(E^{\prime}\right)$ is the photon energy density distribution (number of photons per cubic metre with an energy between E^{\prime} and $E^{\prime}+d E^{\prime}$) This power is Lorentz invariant

$$
\frac{V_{\text {Lab }}\left(E_{\text {Lab }}\right) d E_{\text {Lab }}}{E_{\text {Lab }}}=\frac{V_{\text {FoR }}\left(E_{\text {FoR }}\right) d E_{\text {FoR }}}{E_{\text {For }}}
$$

In the "Thomson limit" one assumes that the energy change of the photon in the rest frame of the electron is small, $E_{\text {FoR }}^{\prime}=E_{\text {For }}$
(this limit was also used in the derivation of Eq. (6.31)). Furthermore one can show that the power is Lorentz invariant: $\frac{d E_{\text {For }}}{d t_{\text {ooR }}}=\frac{d E_{\text {Lab }}}{d t_{\text {Lab }}}$
. Therefore

$$
\begin{aligned}
\left.\frac{d E_{\text {Lab }}}{d t_{\text {Lab }}}\right|_{\text {em }} & =c \sigma_{\mathrm{T}} \int E_{\text {FoR }}^{2} \frac{V_{\text {For }} d E_{\text {FoR }}}{E_{\text {ori }}} \\
& =c \sigma_{\mathrm{T}} \int E_{\text {Foo }}^{2} \frac{V_{\text {Lad }} d E_{\text {Lab }}}{E_{\text {Lab }}}
\end{aligned}
$$

.. Lorentz transtorming $E_{\text {Foi }}$
.averaging over angles $\left(\langle\cos \theta\rangle=0,\left\langle\cos ^{2} \theta\right\rangle=\frac{1}{3}\right)$

$$
=c \sigma_{T} \gamma^{2}\left(1+\frac{\beta^{2}}{3}\right) U_{\mathrm{rad}}
$$

6-12
where

$$
U_{\text {rad }}=\int E V(E) d E
$$

(initial photon energy density).
To determine the power gain of the photons, we need to subtract the power irradiated onto the electron

$$
\left.\frac{d E_{\text {Lab }}}{d t_{\text {Lab }}}\right|_{\text {inc }}=c \sigma_{T} \int E V(E) d E=\sigma_{\mathrm{T} C} C U_{\text {rad }}
$$

Therefore, since

$$
\gamma^{2}-1=\gamma^{2} \beta^{2}
$$

$$
\begin{aligned}
P_{\text {compt }} & =\left.\frac{d E_{\text {lab }}}{d t}\right|_{\mathrm{em}}-\left.\frac{d E_{\text {abd }}}{d t}\right|_{\text {inc }} \\
& =\frac{4}{2} \sigma \text { Tc鄉 } \beta^{2} U_{\text {rad }}
\end{aligned}
$$

$$
=\frac{4}{3} \sigma \operatorname{coc} \boldsymbol{c}^{2} \beta^{2} U_{\text {rad }}
$$

As shown before, in the electron frame of rest,

$$
\begin{equation*}
\frac{\Delta E}{E}=-\frac{E}{m_{\mathrm{e}} c^{2}} \tag{6.15}
\end{equation*}
$$

Assuming a thermal (Maxwell) distribution of electrons (i.e., they're not at rest), using the equations from the previous slides one can show that the relative energy change is given by

$$
\begin{equation*}
\frac{\Delta E}{E}=\frac{4 k T-E}{m_{\mathrm{e}} c^{2}}=A \tag{6.45}
\end{equation*}
$$

where A is the Compton amplification factor.
Thus:
$E \lesssim 4 k T_{\mathrm{e}} \Longrightarrow$ Photons gain energy, gas cools down.
$E \gtrsim 4 k T_{\mathrm{e}} \Longrightarrow$ Photons loose energy, gas heats up.

Thermal Comptonization

Amplification factor, II

In reality, photons will scatter more than once before leaving the hot electron medium.

The total relative energy change of photons by traversal of a hot $\left(E \ll k T_{\mathrm{e}}\right)$
medium with electron density n_{e} and size ℓ is then approximately

$$
\begin{equation*}
(\text { rel. energy change } y)=\frac{\text { rel. energy change }}{\text { scattering }} \times(\# \text { scatterings }) \tag{6.46}
\end{equation*}
$$

The number of scatterings is $\max \left(\tau_{\mathrm{e}}, \tau_{\mathrm{e}}^{2}\right)$, where $\tau_{\mathrm{e}}=n_{\mathrm{e}} \sigma_{\mathrm{T}} \ell$ ("optical depth"), such that

$$
\begin{equation*}
y=\frac{4 k T_{\mathrm{e}}}{m_{\mathrm{e}} c^{2}} \max \left(\tau_{\mathrm{e}}, \tau_{\mathrm{e}}^{2}\right) \tag{6.47}
\end{equation*}
$$

"Compton y-Parameter"

Photon spectra can be found by analytically solving the "Kompaneets equation", but this is very difficult.

Approximate spectral shape from the following arguments:
After k scatterings, the energy of a photon with initial energy E_{i} is approximately

$$
\begin{equation*}
E_{k}=E_{\mathrm{i}} A^{k} \tag{6.48}
\end{equation*}
$$

But the probability to undergo k scatterings in a cloud with optical depth τ_{e} is $p_{k}\left(\tau_{\mathrm{e}}\right)=\tau_{\mathrm{e}}^{k}$
(follows from theory of random walks, note that the mean free path is $\ell=1 / \tau_{\mathrm{e}}$).
Therefore, if there are $N\left(E_{\mathrm{i}}\right)$ photons initially, then the number of photons emerging at energy E_{k} is

$$
\begin{equation*}
N\left(E_{k}\right) \sim N\left(E_{\mathrm{i}}\right) A^{k} \sim N\left(E_{\mathrm{i}}\right)\left(\frac{E_{k}}{E_{i}}\right)^{-\alpha} \quad \text { with } \quad \alpha=-\frac{\ln \tau_{e}}{\ln A} \tag{6.49}
\end{equation*}
$$

Comptonization produces power-law spectra.
General solution: Possible via the Monte Carlo method.

Thermal Comptonization

Monte Carlo simulation shows: Spectrum is \Longrightarrow Power law with exponential cutoff (here: with additional "Wien hump", see next slide)

Thermal Comptonization

Thermal Comptonization

Broad Lines with ASCA

ASCA: Average Seyfert Fe K α profile contains a narrow core and a red and blue wings, but they are much weaker than MCG-6-30-15.

6-25
MCG-6-30-15, II

Better modeling of soft excess and reflection $\Longrightarrow \mathrm{Fe} \mathrm{K} \alpha$ line has extreme width and skewed profile.

Components of the final fit \Longrightarrow Line emissivity is strongly concentrated towards the inner edge of the disk ($\epsilon \propto r^{-4.6}$; cannot be explained with standard α-disk)

2001 July/August: 315 ksec observation
(Fabian et al., 2002)

- Strong narrow line
- broad line clearly present
- emissivity profile very steep for radii close to $r_{\text {in }}$
$I_{\text {Fe K } \alpha} \propto r^{-5.5 \pm 0.3}$ for $r<6.1_{-0.5}^{+0.8} r_{\mathrm{g}}$, $\propto r^{-2.7 \pm 0.1}$ outside that;
Fabian \& Vaughan (2003); confirms Wilms et al. (2001)

Broad Lines with XMM

Line profile variability in NGC $3516 \Longrightarrow$ Corotating flare? $\left(7 r_{\mathrm{g}} \lesssim r \lesssim 16 r_{\mathrm{g}}\right)$ If interpretation is pushed further, gives $M \sim(1 \ldots 5) \times 10^{7} M_{\odot}$.

6-29

(Longinotti et al., 2003)

IRAS 13349+2436:

- Model either 2 broad emission lines or
- relativistic line from Fe XXIII/XXIV plus narrow absorption feature
Line shape can be rather complex!

(1H0707-495; Fabian et al., 2004)

Energy [keV]
(IRAS 13224-3809; Boller et al., 2003)

NLSy1: Strong absorption or a relativistic line fron a reflection dominated spectrum both describe the data equally well!

Similar results have been found by Pounds et al. in a variety of sources. .
But: strong absorption models contradict observations where data $>10 \mathrm{keV}$ available.

$$
\begin{array}{lllllll}
5 & 5.5 & 6 & 6.5 & 7 & 7.5 & 8
\end{array}
$$

Rest frame energy [keV]

The majority of Seyfert galaxies and QSOs do not show evidence for broad Fe $K \alpha$ lines!
statistics for PG-QSO: 20/38 show Fe $\mathrm{K} \alpha$ line of these 3 have broad line (Jiménez-Bailón et al., 2005)

Bianchi et al. (2004, Fig. 4) [Sample of Seyferts with simultaneous BeppoSAX observations.]

Narrow Lines

Conclusions,

Relativistically broadened $\mathrm{Fe} \mathrm{K} \alpha$ lines clearly do exist in a variety of different AGN

We need to rethink the details of the accretion process and the accretion geometry close to black hole:

- Energy extraction for extremely broad lines?

Coupling BH - disk, structure of the inner disk (no torque condition?, structure of the infall region,...)

- "Lamppost model"?
(Petrucci \& Henri, 1997; Martocchia, Matt \& Karas, 2002; Miniutti \& Fabian, 2004)
\Longrightarrow X-rays focused down from the jet base? \Longrightarrow If true, is continuum Comptonization? Fender et al. (2004), Markoff, Nowak \& Wilms (2005) for galactic BH

To be successful, models will have to consider:

- Broad Fe K α lines are rare:

- Truncated Disks?
e.g., invoked by Zdziarski et al. (1999) to explain $\Omega / 2 \pi-\Gamma$-correlation
- Disk ionization (but needs fine tuning!)
- And what about the Unified Model?

Is the viewing angle really edge on?

- Narrow lines are ubiquitous:
- Are they formed in the torus?
but narrow lines often have FWHM~4000-7000 $\mathrm{km} \mathrm{s}^{-1}$

$$
\left.\Longrightarrow \text { too large for torus! (expect } \sim 760 \mathrm{~km} \mathrm{~s}^{-1}\left(M_{8} / r_{\mathrm{pc}}\right)^{1 / 2}\right)
$$

- Do they originate in the BLR or an ionized disk?
.... and we should not forget the observational constraints: Strong Fe K α variability \Longrightarrow we need a larger collecting area (XEUS!)

Conclusions

(Streblyanska et al., 2005) rest frame energy [keV]

Bianchi, S., Matt, G., Balestra, I., Guainazzi, M., \& Perola, G. C., 2004, A\&A, 422, 65
Boller, T., Tanaka, Y., Fabian, A.. Brandt, W. N., Gallo, L., Anabuki, N., Haba, Y., \& Vaughan, S., 2003, MNRAS, 343, L89 Comastri, A., Brusa, M., \& Civano, F., 2004, MNRAS, 351, L9
Fabian, A. C., Miniutti, G., Gallo, L., Boler, T., Tanaka, Y., Vaughan, S., \& Ross, R. R., 2004, MNRAS, 353, 107 Fabian, A. C., et al., 2002, MNRAS, 335, L1
Guainazzi, M., et al., 1999, A\&A, 341, L27 Iwasawa, K., et al., 1996, MNRAS, 282, 1038
Iwasawa, K., Miniutti, G., \& Fabian, A. C., 2004, MNRAS, 355, 1073
Jiménez-Bailón, E., Piconcelli, E., Guainazzi, M., Schartel, N., Rodriguez-Pascual, P. M., \& Santos-Leó, M., 2005, A\&A, 435, 449
Lee, J. C., Fabian, A. C., Brandt, W. N., Reynolds, C. s., \& Iwasawa, K., 1999, MNRAS, 310,973
Longinotti, A. L., Cappi, M., Nandra, K., Dadina, M., \& Pelletrini, S., 2003, A\&A, 410, 471
Lubiński, P., \& Zdziarski, A. A., 2001, MNRAS, 323, L37
Markoff, S., Nowak, M. A., \& Wilms, J., 2005, ApJ, 635, 1203
Martocchia, A., Matt, G., \& Karas, V., 2002, A\&A, 383, L23
Matt, G., Porquet, D., Bianchi, s., Falocco, S., Maiolino, R., Reeves, J. N., \& Zappacosta, L., 2005, A\&A, 435, 867
Miniutti, G., \& Fabian, A. C., 2004, MNRAS, 349, 1435
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., \& Yaqoob, T., 1997, ApJ, 477, 602
Petrucci, P. O., \& Henti, G., 1997, A\&A, 326, 99
Porquet, D., \& Reeves, J. N., 2003, A\&A, 408, 119
Reeves, J. N., Turner, M. J. L., Pounds, K. A., O'Brien, P. T., Boller, T., Ferrando, P., Kendziorra, E., \& Vercellone, S., 2001, A\&A, 365, L134
Streblyanska, A., Hasinger, G., Finoguenov, A., Barcons, X., Mateos, S., \& Fabian, A. C., 2005, A\&A, 432, 395

6-35

Tanaka, Y., et al., 1995, Nature, 375, 659
Wilms, J., Reynolds, C. S., Begelman, M. C., Reeves, J., Molendi, S., Staubert, R., \& Kendziorra, E., 2001, MNRAS, 328, L27

