

Line Diagnostics
9

Line Diagnostics

Critical densities for $T=10^{4} \mathrm{~K}$ used in AGN work (Hamann et al., 2002; Peterson, 1997).

Transition	$n_{\text {cr }}\left(\mathrm{cm}^{-3}\right)$
[Ne III $\lambda 3869$	9.7×10^{6}
[Ne V] $\lambda 3426$	1.60×10^{7}
C II] $\lambda 2326$	3.16×10^{9}
C III $\lambda 977$	1.59×10^{16}
C III $\lambda 1909$	1.03×10^{10}
C IV $\lambda 1549$	2.06×10^{15}
[N I] $\lambda 5199$	2×10^{3}
N II] 2142	9.57×10^{9}
[N II] $\lambda 6548$	8.7×10^{4}
[N II] $\lambda 6583$	8.7×10^{4}
N III $\lambda 991$	8.09×10^{15}
N III $\lambda 1750$	1.92×10^{10}
N IV] $\lambda 1486$	5.07×10^{10}
N V $\lambda 1240$	3.47×10^{15}

Line Diagnostics: Temperature

Francis, P. J., Hewett, P. C., Foltz, C. B., Chaftee, F. H., Weymann, R. J., \& Morris, S. L., 1991, ApJ, 373, 465
Hamann, F. \& Ferland, G., 1999, ARA\&A, 37, 487
Hamann, F., Korista, K. T., Ferland, G. J., Warner, C., \& Baldwin, J., 2002, ApJ, 564,592
Karzas, W. J., \& Latter. R., 1961, ApJS, 6. 167
Korista, K. T., \& Ferland, G. J., 1989, ApJ, 343,678
Mathews, W. G., \& Ferland, G. J., 1987, ApJ, 323, 456
Menzel, D. H., \& Pekeris, C. L., 1935, MNRAS, 96,7
Nahar, S. N., Prachan, A. K., \& Zhang, H. L., 2001, ApJS, 133,255
Osterbrock, D. E., 1989, Astrophysics of gaseous nebulae and active galactic nuclei, (Mill Valley, CA: University Science Books)
Peterson, B. M., 1997, An Introduction to Active Galactic Nuclei, (Cambridge: Cambridge Univ. Press)
Seaton, M. J., 1958, Rev. Mod. Phys., 30, 979
Shull, J. M., \& Van Steenburg, M., 1982, ApJS, 48, 95
Verner, D. A.. Ferland, G. J., Korista, K. T., \& Yakoviev, D. G.., 1996, ApJ, 465, 487
Verner, D. A. \& Yakoviev, D. G., 1995, A\&AS, 109,125
Wilms, J., Allen, A. \& McCray, R.. 2000, ApJ, 542, 914

Average quasar spectra for $2.03<z<2.311$, normalized to the same flux at $\lambda=2200 \AA$ (vanden Berk et al., 2004, Fig. 1)

- Overall, spectral shape is luminosity independent
- Baldwin effect: Emission lines (esp. Ly α and C IV 1549Å) weaker in more luminous objects, although shape similar.
This chapter: physics of region emitting the broad lines.

Review: Peterson (2006)

Properties

General properties of the BLR from observed spectrum:

- Emission lines from BLR: typical for $T \sim 10^{4} \mathrm{~K}$ (photoionization)
- Lines have widths of $500 \ldots 25000 \mathrm{~km} \mathrm{~s}^{-1}$

Thermal motion:
\Longrightarrow Typical thermal speed:

$$
\begin{equation*}
E_{\text {kin }}=\frac{1}{2} m_{\mathrm{p}} v^{2}=\frac{3}{2} k T \tag{8.1}
\end{equation*}
$$

$$
\begin{equation*}
v \sim \sqrt{\frac{3 k T}{m_{\mathrm{p}}}} \sim 20 \mathrm{~km} \mathrm{~s}^{-1} \tag{8.2}
\end{equation*}
$$

- Line broadening is due to supersonic bulk motion of BLR emitting gas
- No [O III] 4959/5007 lines $\Longrightarrow n \gtrsim n_{\text {crit, } 5077} \sim 10^{8} \mathrm{~cm}^{-3}$.
- C iii] 1909 line sometimes broad, so $n \lesssim n_{\text {crit, }} 1909 \sim 10^{10} \mathrm{~cm}^{-3}$.

More detailed analyses show C iii] to originate in region different from Ly α emitting region, typical densities can be as high as $10^{11} \mathrm{~cm}^{-3}$

Location

Location of BLR from line width:
Assume emitting gas on a circular orbit:
Kepler speed:

$$
\begin{equation*}
\frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \Longrightarrow v=\sqrt{\frac{G M}{r}} \tag{8.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
r=\frac{G M}{v^{2}}=3600 \mathrm{AU}\left(\frac{M}{10^{6} M_{\odot}}\right)\left(\frac{v}{500 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{-2} \tag{8.4}
\end{equation*}
$$

The BLR is located close to the central black hole.

Note: BLR probably does not consist of gas on circular orbits around the BH, so real size is larger.

BLR: Mass

Mass determination: Determine number of emitting atoms from line strength, e.g., $\mathrm{H} \beta$ (less influenced by radiative transfer effects than Lyman lines)

Line emissivity:

$$
\begin{equation*}
j_{\mathrm{H} \beta}=n_{\mathrm{e}} n_{\mathrm{p}} \alpha_{\mathrm{H} \beta} \frac{h \nu_{\mathrm{H} \beta}}{4 \pi}=n_{\mathrm{e}}^{2} \mathrm{e}_{\mathrm{H} \beta}^{\text {ef }} \frac{h \nu_{\mathrm{H} \beta}}{4 \pi}=1.24 \times 10^{-25} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-3} \mathrm{sr}^{-1} \frac{n_{\mathrm{e}}^{2}}{4 \pi} \tag{8.5}
\end{equation*}
$$

where $\alpha_{H \beta}^{\text {eff }}$: effective recombination coefficient for $n=4 \rightarrow n=2$ transition (weakly temperature dependent).
Total $\mathrm{H} \beta$ luminosity:

$$
\begin{equation*}
L_{\mathrm{H} \beta}=\iint j_{\mathrm{H} \beta} \mathrm{~d} \Omega \mathrm{~d} V=\frac{4 \pi n_{\mathrm{e}}^{2}}{3} \cdot 1.24 \times 10^{-25} r^{3} f \mathrm{erg} \mathrm{~s}^{-1} \propto \int n_{\mathrm{e}}^{2} \mathrm{~d} V \tag{8.6}
\end{equation*}
$$

where $\int n_{\mathrm{e}}^{2} \mathrm{~d} V$: emission measure, and f : filling factor.

$$
\text { BLR lines give BLR mass of } \sim 1 M_{\odot} \text { and } f \sim 10^{-3} \text {. }
$$

Observed lines are bright because of n^{2}-proportionality and high density of BLR gas.

Reverberation Mapping

Reverberation Mapping

Time delay due to light travel effect:

$$
\begin{equation*}
\tau=(1+\cos \theta) \frac{r}{c} \tag{8.10}
\end{equation*}
$$

Light emitted by
illuminated gas will be observed only after a time delay.
Extra distance traveled by light from r :

$$
\begin{equation*}
r^{\prime}=r+r \cos \theta \tag{8.9}
\end{equation*}
$$

Reverberation Mapping

Time delay was given by:

$$
\begin{equation*}
\tau=(1+\cos \theta) \frac{r}{c} \tag{8.10}
\end{equation*}
$$

Locus of points with same time delay (isodelay surface):

$$
\begin{equation*}
r(\tau)=\frac{c \tau}{1+\cos \theta} \tag{8.11}
\end{equation*}
$$

Assume that line intensity increases by factor ζ when BLR gas is illuminated by flash.
\Longrightarrow total line emissivity increase from the isodelay surface:

$$
\begin{equation*}
\Psi(\theta) d \theta=\zeta \cdot 2 \pi r^{2} \sin \theta d \theta \tag{8.12}
\end{equation*}
$$

This assumes that conditions in BLR at r are the same everywhere.
$\Psi(r) d \theta$ corresponds to a response at time delay τ :

$$
\begin{equation*}
\Psi(\tau) d \tau=\Psi(\theta) d \theta\left|\frac{d \theta}{d \tau}\right| d \tau=\zeta \cdot 2 \pi r^{2} \sin \theta \cdot \frac{c}{r \sin \theta} d \tau=2 \pi \zeta r c d \tau \tag{8.13}
\end{equation*}
$$

where $\tau=(1+\cos \theta) r / c$, i.e., $d \tau / d \theta=-\sin \theta \cdot r / c$ was used.

Reverberation Mapping

$$
\begin{equation*}
L(t)=\int_{-\infty}^{+\infty} \Psi(\tau) C(t-\tau) d \tau \tag{8.14}
\end{equation*}
$$

To solve equations such as
:
for Ψ, the standard approach in mathematics is to determine the Fourier transform of $L(t)$:

$$
\begin{equation*}
L(f)=\int_{-\infty}^{+\infty} L(t) e^{-2 \pi i f t} d t \tag{8.15}
\end{equation*}
$$

inserting Eq. (8.14) gives

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Psi(\tau) C(t-\tau) e^{-2 \pi i f t} d \tau d t \tag{8.16}
\end{equation*}
$$

change order of integration

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} \Psi(\tau) \int_{-\infty}^{+\infty} C(t-\tau) e^{-2 \pi i f t} d t d \tau \tag{8.17}
\end{equation*}
$$

substitute $t-\tau \longrightarrow t^{\prime}$

$$
=\int_{-\infty}^{+\infty} \Psi(\tau) \int_{-\infty}^{+\infty} C\left(t^{\prime}\right) e^{-2 \pi i f\left(t^{\prime}+\tau\right)} d t^{\prime} d \tau
$$

Reverberation Mapping

("convolution" of C with kernel $\Psi(\tau)$).

Observational problem is the inverse of Eq. (8.14): Given $L(t)$, determine $\Psi(\tau)$. ($C(t-\tau)$ is known from continuum variations), provided the lightcurve is long enough, as τ can be days to months!

Reverberation Mapping

Therefore

$$
L(f)=\int_{-\infty}^{+\infty} \Psi(\tau) \int_{-\infty}^{+\infty} C\left(t^{\prime}\right) e^{-2 \pi i f\left(t^{\prime}+\tau\right)} d t^{\prime} d \tau
$$

move constant outside of the inner integral and drop the prime

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} \Psi(\tau) e^{-2 \pi i f \tau} \int_{-\infty}^{+\infty} C(t) e^{-2 \pi i f t} d t d \tau \tag{8.19}
\end{equation*}
$$

since the inner integral is a constant this gives

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} e^{-2 \pi i f \tau} \Psi(\tau) d \tau \cdot \int_{-\infty}^{+\infty} C(t) e^{-2 \pi i f t} d t \tag{8.20}
\end{equation*}
$$

which is the product of the Fourier transforms of C and Ψ :

$$
\begin{equation*}
L(f)=\Psi(f) \cdot C(f) \tag{8.21}
\end{equation*}
$$

This is just the convolution theorem of Fourier theory

Blandford \& McKee (1982): Since $L(f)$ and $C(f)$ can be measured, we can determine $\Psi(f)$ and then do an inverse FT :

$$
\begin{equation*}
\Psi(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Psi(f) e^{+2 \pi i f t} d f \tag{8.22}
\end{equation*}
$$

so we can in principle measure $\Psi(f)$.
In practice: Fourier approach does not work.
Reason: Sparse sampling of lightcurves
\Longrightarrow Potential of reverberation mapping has not yet been realized!

What is possible is to determine size of BLR from reverberation mapping

Reverberation Mapping

Reverberation Mapping

Reverberation Mapping

To get BLR size from reverberation, work in time domain and determine cross correlation of $L(t)$ and $C(t)$:

$$
\begin{equation*}
\operatorname{CCF}(\tau)=\int_{-\infty}^{+\infty} L(t) C(t-\tau) d t \tag{8.23}
\end{equation*}
$$

insert $L(t)$ from Eq. (8.14):

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} C(t-\tau) \int_{-\infty}^{+\infty} C\left(t-\tau^{\prime}\right) \Psi\left(\tau^{\prime}\right) d \tau^{\prime} d t \tag{8.24}
\end{equation*}
$$

change order of integration

$$
\begin{equation*}
=\int_{-\infty}^{+\infty} \Psi\left(\tau^{\prime}\right) \int_{-\infty}^{+\infty} C(t-\tau) C\left(t-\tau^{\prime}\right) d t d \tau^{\prime} \tag{8.25}
\end{equation*}
$$

and introduce the auto correlation function, ACF,

$$
=\int_{-\infty}^{+\infty} \Psi\left(\tau^{\prime}\right) \operatorname{ACF}\left(\tau-\tau^{\prime}\right) d \tau^{\prime}
$$

where

$$
\operatorname{ACF}(\tau)=\int_{-\infty}^{+\infty} C(t) C(t-\tau) d t
$$

8-19

(Peterson et al., 2004, Fig. 3)
As expected: broadest lines vary fastest.
Also found: higher ionization lines vary fastest $\Longrightarrow B L R$ has stratified ionization structure

