

(Kewley et al., 2006)

 $R\sim 20 f^{-1/3} (10^4/N_{\rm e})^{2/3}\,{\rm pc},$ i.e., 90 pc with an estimated filling factor of $f = 10^{-2}$.

observed

Nature of the NLR

NLR Models

3

9-6

9 - 5

Nature of the NLR

log([OI]6300/[OIII]5007)

(Murayama & Taniguchi, 1998, Fig. 2)

Alternative explanation of unusual line ratios: two and multiple zone NLR models. Triggered, e.g., by too strong Fe line emission

Photoionization models can reproduce ratios of strong observed lines such as

BUT: Strengths of high and low ionization

 \implies rules out the simplest photoionization

Potential solution: shock ionization

Photons produced after a shock (where

Shock possibly related to jet/radio outflow.

(Allen et al., 1999, and therein)!

 $T \sim 10^6$ K) can ionize pre-shock gas \implies combination of collisional ionization and

[O III 5007]/H β ratio and absolute

luminosity of these lines.

simultaneously!

photoionization.

models!

stages cannot be reproduced

For example: High ionization nuclear emission region (HINER) models (Murayama & Taniguchi, 1998): 10% of

NLR emission from high density

 $(n_{\rm e} \sim 10^9 \, {\rm cm^{-3}})$ photoionized region within torus which is responsible for emission from high ionized species.

Similar models have also been proposed, e.g, by Komossa & Schulz (1997) and by many other authors.

Problem: Too many free parameters \implies Search for physical constraints!

E.g., matter bounded vs. ionization bounded clouds, locally optimally emitting clouds,...

Imaging of the NLR

Line diagnostics: size of NLR: \sim 90 pc or larger.

 \implies for the nearest AGN imaging is possible

(e.g., Circinus galaxy: $d = 4 \text{ Mpc} \longrightarrow 1'' = 19 \text{ pc.}$

Imaging of NLR possible either using integral field spectroscopy or narrow-band filters.

Often used: narrow-band H α and [O III] filters.

Results (see, e.g., Pogge 1988):

- ionization cones,
- stratified ionization structure in many AGN.
- ⇒ Extended Narrow Line Region (ENLR).

In the following: two typical examples: NGC 1068 (=M77) and Circinus galaxy. Similar studies have been performed for \gtrsim 30 nearby AGN.

Imaging of NLR

NGC 1068 (M77), NOAO 20"

NGC 1068, II

9–9

3

9–9

NGC 1068 (M77): Seyfert 2 nucleus at z = 0.003 ($d \sim 15$ Mpc), one of the best studied galaxies in the sky.

NGC 1068 (M77) (Bill Arnett)

Imaging of NLR

NGC 1068, III

NGC 1068 (M77): Seyfert 2 nucleus at z = 0.003 ($d \sim 15$ Mpc), one of the best studied galaxies in the sky.

Pogge (1988): Extended ionizing radiation cone from the nucleus of NGC 1068, along the direction of the radio jet.

Circinus galaxy:

• $d\sim$ 4 Mpc (1 $^{\prime\prime}\sim$ 19 pc)

• 2nd nearest AGN on southern hemisphere after Cen A

SAb galaxy

• Seyfert 2 nucleus

(HST Wilson et al., 2000, Fig. 2)

NGC 1068 (M77) core with HST in O III

Allen, M. G., Dopita, M. A., Tsvetanov, Z. I., & Sutherland, R. S., 1999, ApJ, 511, 686 Baldwin, J. A., Phillips, M. M., & Terlevich, R., 1981, PASP, 93, 5 Kewley, L. J., Groves, B., Kaulfmann, G., & Heckman, T., 2006, MNRAS, 372, 961 Komossa, S., & Schulz, H., 1997, A&A, 323, 31 Murayama, T., & Taniguchi, Y., 1998, ApJ, 503, L115 Osterbrock, D. E., 1989, Astrophysics of gaseous nebulae and active galactic nuclei, (Mill Valley, CA: University Science Books) Osterbrock, D. E., 1991, Rep. Prog. Phys., 54, 579 Pogge, R. W., 1988, ApJ, 328, 519 Prieto, M. A., et al., 2004, ApJ, 614, 135

Jets and Radio Loud AGN

Synchrotron Radiation

Jets are observed to have strong polarization and power law radio spectrum. These are characteristics of synchrotron radiation.

Synchrotron-Radiation (=Magnetobremsstrahlung): Radiation emitted by relativistic electrons in a magnetic field.

Goal: Qualitative analysis:

- 1. Derive the motion of electrons in magnetic fields
- 2. Then use Larmor's formula to obtain the radiation characteristic from relativistic motion
- 3. Use the Doppler-effect to convert into the observer's frame of reference.
- 4. Integrate over electron distribution to obtain the final spectrum.

Detailed theory: see Ginzburg & Syrovatskii (1965), Ginzburg & Syrovatskii (1969), Blumenthal & Gould (1970), Reynolds (1982).

Synchrotron Radiation

10 - 1

Relativistic Motion

Lorentz-Force (E=0)

$$\frac{d\boldsymbol{p}}{dt} = \frac{e}{c}\boldsymbol{v} \times \boldsymbol{B} \quad \text{where} \quad \boldsymbol{p} = \frac{m_{e}\boldsymbol{v}}{\sqrt{1-\beta^{2}}} = \gamma m_{e}\boldsymbol{v}$$
(10.1)

where $\beta = v/c$.

Assumption: No radiative losses (i.e., electron does *not* emit synchrotron radiation...): $\gamma = \text{const.}$ Velocity-vector of the electron:

$$\boldsymbol{v}_{\parallel} = \frac{\boldsymbol{v} \cdot \boldsymbol{B}}{B} \frac{\boldsymbol{B}}{B} \qquad \qquad \boldsymbol{v}_{\perp} = \frac{\boldsymbol{B} \times (\boldsymbol{v} \times \boldsymbol{B})}{B^2} \qquad (10.2)$$
$$|\boldsymbol{v}_{\parallel}| = v \cos \alpha \qquad \qquad |\boldsymbol{v}_{\perp}| = v \sin \alpha \qquad (10.3)$$

where α (pitch-angle): $\angle(\boldsymbol{v}, \boldsymbol{B})$

No acceleration parallel to the B-field \Longrightarrow only v_{\perp} is interesting \Longrightarrow circular motion:

$$n_{\mathbf{e}}a_{\perp} = \frac{\gamma m_{\mathbf{e}}v_{\perp}^2}{R} = \frac{e}{c}\mathbf{v}_{\perp}B \tag{10.4}$$

$$\frac{v_{\perp}}{R} = \frac{eB}{\gamma m_{e}c} = \frac{\omega_{\rm L}}{\gamma} = \omega_{\rm B}$$
(10.5)

where $\omega_L = 2\pi \nu_L$: Larmor frequency (also Cyclotron frequency, gyrofrequency).

10 - 5

Numerical values

Numerically, Larmor frequency is

$$\nu_{\rm L} = 2.8 B_{1\rm G} \,\mathrm{MHz}$$
 (10.6)

The radius of the orbit (Larmor radius) is

$$R = \frac{\gamma v_{\perp}}{\omega_{\rm L}} \approx 10^7 \frac{E_{\rm 1GeV}}{B_{\rm 1G}} \,\mathrm{cm} \tag{10.7}$$

Typical values:

B pprox 10⁻⁵ G, E = 1 GeV, \Longrightarrow R = 3 imes 10¹³ cm (2 AU).

i.e., small on cosmic scales

Synchrotron Radiation

3

10 - 7

10 - 6

Radiated Energy, I

$$P_{\rm em} = \frac{2e^2}{3c^3}\gamma^4 \left(a_\perp^2 + \gamma^2 a_\parallel^2\right) \tag{10.8}$$

where a is the acceleration.

([Messy] derivation by Lorentz-transforming the classical Larmor formula ($P = (2e^2/3c^3) \cdot a^3$), see, e.g., Shu)

For circular motion, $a_{\perp} = \omega_{\rm BV_{\perp}}$ and $a_{\parallel} =$ 0. Hence

$$P_{\rm em} = \frac{2e^2}{3c^3} \gamma^4 \frac{v_{\perp}^2 e^2 B^2}{\gamma^2 m_{\rm e}^2 c^2}$$
(10.9)

$$= 2\beta^2 \gamma^2 c \cdot \sigma_{\mathsf{T}} \cdot U_{\mathsf{B}} \cdot \sin^2 \alpha \tag{10.10}$$

where $U_{\rm B}=B^2/8\pi$ (Energy density of the *B*-field), $\sigma_{\rm T}=\frac{8\pi c^4}{3m_e^2c^4}$ (Thomson-cross section).

Presence of σ_T due to quantum electrodynamics: Derivation of synchrotron-radiation in frame of reference of electron via interaction of electron with a virtual photon of the magnetic field (i.e., Compton scattering with virtual photon).

Radiated Energy, II

 $\langle P_{\rm em} \rangle = \frac{4}{3} \beta^2 \gamma^2 c \sigma_{\rm T} U_{\rm B}$

Total energy radiated: Integration over all electrons.

Assumption: Isotropic velocity distribution.

Average pitch angle

$$\left\langle \sin^2 \alpha \right\rangle = \frac{1}{4\pi} \int_0^{4\pi} \sin^2 \alpha \, d\Omega = \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^{\pi} \sin^2 \alpha \sin \alpha \, d\alpha = \frac{2}{3} \tag{10.11}$$

therefore

for $\beta \longrightarrow 1$.

Note: Since $E = \gamma m_e c^2 \Longrightarrow P \propto E^2 U_B$.

Note: $P_{\rm em} \propto \sigma_{\rm T} \propto m_{\rm e}^{-2} \Longrightarrow$ Synchrotron radiation from charged particles with larger mass (protons,...) is negligible.

Note: Life-time of particle of energy E is

$$t_{1/2} \sim \frac{E}{P} \propto 1/(B^2 E) = 5 \,\mathrm{s} \,\left(\frac{B}{1\,\mathrm{T}}\right)^{-2} \gamma^{-1} = 1.6 \times 10^7 \,\mathrm{years} \,\left(\frac{B}{10^{-7}\,\mathrm{T}}\right)^{-2} \gamma^{-1}$$
 (10.13)

Synchrotron Radiation

5

(10.12)

For $\gamma \gg 1$, i.e., $\beta = v/c \sim 1$ $\frac{1}{\gamma^2} = 1 - \frac{v^2}{c^2} = (1 + \beta)(1 - \beta) \approx 2(1 - \beta)$ (10.16) such that

 $\tau = (1 - \beta)\Delta t = \frac{1}{2} \left(1 - \frac{v^2}{c^2} \right) \Delta t = \frac{1}{\gamma^2 \omega_{\rm L}}$ (10.17)

Thus the characteristic frequency of the radiation is given by

$$\omega_{\rm c} = \gamma^2 \omega_{\rm L} = \frac{eB}{m_{\rm e}c} \left(\frac{E}{m_{\rm e}c^2}\right)^2 \tag{10.18}$$

Synchrotron Radiation

9

The observed time-dependent E-Field, E(t), from one electron is a sequence of pulses of width τ , separated in time by Δt .

To a good precision, we can approximate these single peaks with $\delta\text{-functions.}$

In reality: derive spectrum by Fourier-transforming ${\cal E}(t).$ Basic result is the same.

10 - 13

11

Nonthermal Synchrotron Radiation, I

Spectral energy distribution P_{ν} of one electron with total energy $E = \gamma m_e c^2$ is

$$P_{\nu}(\gamma) = \frac{4}{3}\beta^2 \gamma^2 c \sigma_{\rm T} U_{\rm B} \delta(\nu - \gamma^2 \nu_{\rm L})$$
(10.19)

where $\delta(x)$ is a δ -function, i.e.,

$$\delta(x) = 0$$
 for $x \neq 0$ and $\int_{-\infty}^{+\infty} \delta(x) \, dx = 1$ (10.20)

i.e., electron with energy γmc^2 "blinks" at frequency $\nu = \gamma^2 \nu_{\rm L} = 1/\tau$.

For an electron distribution, $n(\gamma)$, the emitted spectrum is found by properly weighting contributions of electrons with different energies:

$$P_{\nu} = \int_{1}^{\infty} P_{\nu}(\gamma) n(\gamma) d\gamma \tag{10.21}$$

Most important case: nonthermal synchrotron radiation, where electrons have a power-law distribution

$$n(\gamma)d\gamma = n_0 \gamma^{-p} d\gamma \tag{10.22}$$

Synchrotron Radiation

10-14 Nonthermal Synchrotron Radiation, II Insert distribution into Eq. (10.21) and perform the integration: $P_{\nu} = \int_{1}^{\infty} \frac{4}{3} \beta^2 \gamma^2 c \sigma_{\rm T} U_{\rm B} \delta(\nu - \gamma^2 \nu_{\rm L}) n_0 \gamma^{-p} d\gamma$ (10.23) since $\gamma \gg 1$: $\beta \approx 1$ $=A\int_{\mathbf{1}}^{\infty}\gamma^{2-p}\delta(\nu-\gamma^{2}\nu_{\mathrm{L}})d\gamma$ (10.24)

substituting $\nu' = \gamma^2 \nu_L$, i.e., $d\nu' = \nu_L 2 \gamma d\gamma$

$$=B\int_{\nu_{\rm L}}^{\infty}\gamma^{1-p}\delta(\nu-\nu')d\nu' \tag{10.25}$$

since $\gamma = (\nu'/\nu_{\rm L})^{1/2}$, one finally finds

$$P_{\nu} = \frac{2}{3} c \sigma_{\rm T} n_0 \frac{U_{\rm B}}{\nu_{\rm L}} \left(\frac{\nu}{\nu_{\rm L}}\right)^{-\frac{\nu-1}{2}}$$
(10.26)

The spectrum of an electron power-law distribution is a power-law!

$$\underbrace{\text{Nonthermal Synchrotron Radiation, III}}_{$$

Exact Results, II

10-18

Result of exact calculation for both polarization directions:

$$\begin{pmatrix} P_{\parallel} \\ P_{\perp} \end{pmatrix} = \frac{\sqrt{3}e^{3}B}{2mc^{2}} \begin{pmatrix} F(\nu/\nu_{c}) - G(\nu/\nu_{c}) \\ F(\nu/\nu_{c}) + G(\nu/\nu_{c}) \end{pmatrix}$$
(10.27)

where

$$F(x) = x \int_{x}^{\infty} K_{5/3}(y) dy$$
 (10.28)

$$G(x) = x K_{2/3}(x)$$
(10.29)

and K_i are modified Bessel-functions of *i*-th order

Polarization allows to measure the magnetic field direction

Total Emitted Spectrum

The total emitted power for monoenergetic electrons is

$$P(\nu) = P_{\parallel}(\nu) + P_{\perp}(\nu) \propto F(\nu)$$
(10.30)

As before, the total emitted spectrum is found by integrating over the electron energy distribution. For a power-law:

$$\begin{pmatrix} P_{\parallel}(\nu) \\ P_{\perp}(\nu) \end{pmatrix} = \left(\frac{\sqrt{3}}{2}\right) n_0 \frac{e^3 B}{m_{\rm e} c^2} \begin{pmatrix} J_F - J_G \\ J_F + J_G \end{pmatrix} \left(\frac{2\nu}{3\nu_{\rm L}}\right)^{-(p-1)/2}$$
(10.31)

where

$$J_F = \frac{2^{(p+1)/2}}{p+1} \Gamma\left(\frac{p}{4} + \frac{19}{12}\right) \Gamma\left(\frac{p}{4} - \frac{19}{12}\right)$$
(10.32)

$$J_G = 2^{(p-3)/2} \Gamma\left(\frac{p}{4} + \frac{7}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right)$$
(10.33)

 $F(x) = x \int_{x}^{\infty} K_{b/2}(\eta) d\eta \text{ and } \mathbf{\mathcal{G}}_{b}(x) = x K_{2/2}(x)$

x	F(x)	G (x)	x	F(x)	£ (x)
0	0	0	0.90	0.694	0.521
0.001	0.213	0.107	1.0	0.655	0.494
0.005	0.358	0.184	1.2	0.566	0.439
0.01	0.445	0.231	1.4	0.486	0.386
0.025	0.583	0.312	1.6	0.414	0.336
0.050	0.702	0.388	1.8	0.354	0.290
0.075	0.772	0.438	2.0	0.301	0.250
0.10	0.818	0.475	2.5	0.200	0.168
0.15	0.874	0.527	3.0	0.130	0.111
0.20	0.904	0.560	3.5	0.0845	0.0726
0.25	0.917	0.582	4.0	0.0541	0.0470
0.29	0.918	0.592	4.5	0.0339	0.0298
0.30	0.918	0.596	5.0	0.0214	0.0192
0.40	0.901	0.607	6.0	0.0085	0.0077
0.50	0.872	0.603	7.0	0.0033	0.0031
0.60	0.832	0.590	8.0	0.0013	0.0012
0.70	0.788	0.570	9.0	0.00050	0.00047
0.80	0.742	0.547	10.0	0.00019	0.00018

10-19