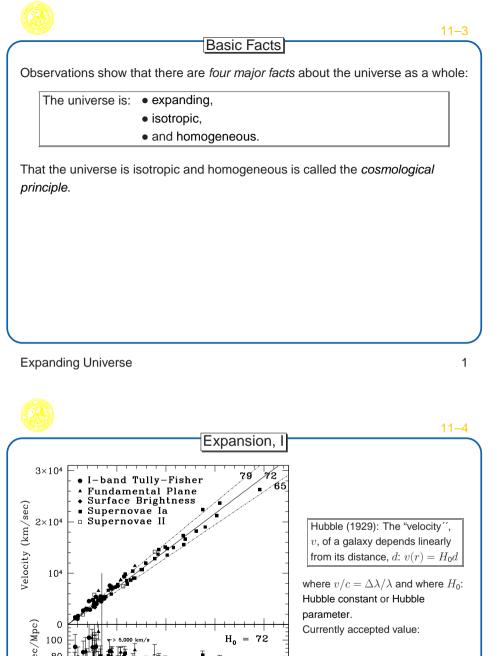
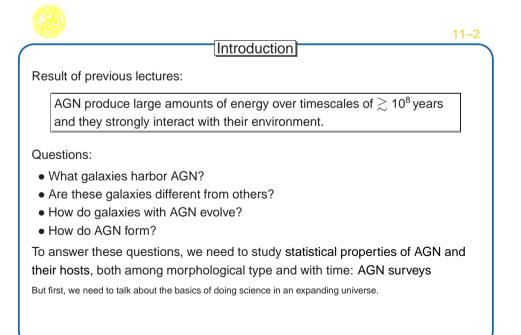
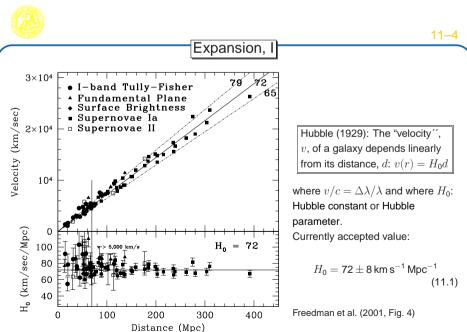


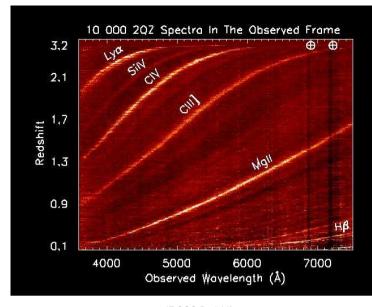
11 - 1

## AGN Surveys and AGN Environment

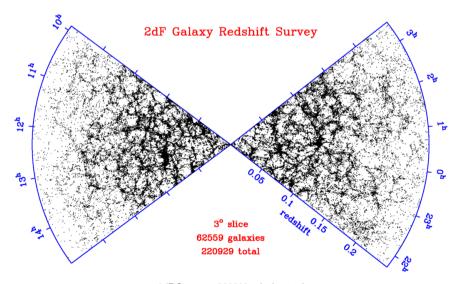




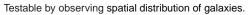




 $\label{eq:good} \begin{array}{l} \mbox{courtesy 2dF QSO Redshift survey} \\ \mbox{As a consequence of the cosmological redshift, for different $z$ different parts of the spectrum of a distant source are visible. \end{array}$ 

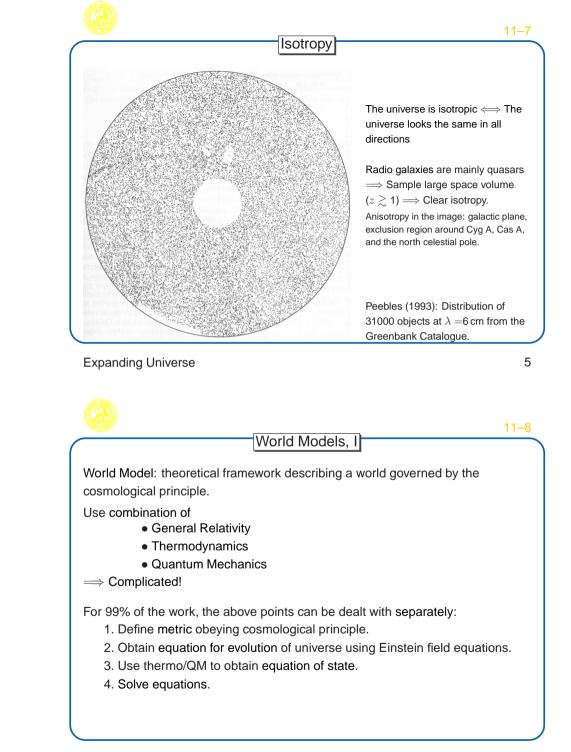


 $<sup>\</sup>begin{array}{c} 2 \text{dF Survey}, \sim 220000 \, \text{galaxies total} \\ \text{The universe is homogeneous} \\ \longleftrightarrow \\ \text{The universe looks the same everywhere in space} \end{array}$ 



On scales  $\gg 100\,\text{Mpc}$  the universe looks indeed the same. Below that: structure.

Structures seen are galaxy clusters (gravitationally bound) and superclusters (larger structures, not [yet] gravitationally bound).



## **Expanding Universe**



## World Models, II

Before we can start to think about universe: Brief introduction to assumptions of general relativity.

 $\implies$  See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

- Space is 4-dimensional, might be curved
- Matter (=Energy) modifies space (Einstein field equation).
- Covariance: physical laws must be formulated in a coordinate-system independent way.
- Strong equivalence principle: There is no experiment by which one can distinguish between free falling coordinate systems and inertial systems.
- At each point, space is locally Minkowski (i.e., locally, SRT holds).
- $\implies$  Understanding of geometry of space necessary to understand physics.

**Expanding Universe** 

7

11 - 10



- Cosmological principle + expansion  $\Longrightarrow \exists$  freely expanding cosmical coordinate system.
  - Observers =: fundamental observers
  - Time =: cosmic time

This is the coordinate system in which the 3K radiation is isotropic, clocks can be synchronized, e.g., by adjusting time to the local density of the universe.

 $\implies$  Metric has temporal and spatial part.

This also follows directly from the equivalence principle.

• Homogeneity and isotropy  $\implies$  spatial part is spherically symmetric:

$$\mathrm{d}\psi^2 := \mathrm{d}\theta^2 + \sin^2\theta \; \mathrm{d}\phi^2 \tag{11.2}$$

• *Expansion:*  $\exists$  scale factor,  $R(t) \Longrightarrow$  measure distances using comoving coordinates.

11-11

g

A metric based on these points looks like

$$ds^{2} = c^{2} dt^{2} - R^{2}(t) \left[ f^{2}(r) dr^{2} + g^{2}(r) d\psi^{2} \right]$$
(11.3)

### where f(r) and g(r) are arbitrary.

Metrics of the form of eq. (11.3) are called Robertson-Walker (RW) metrics (1935), but have been previously also studied by Friedmann and Lemaître.

RW Metric. II

One common choice is

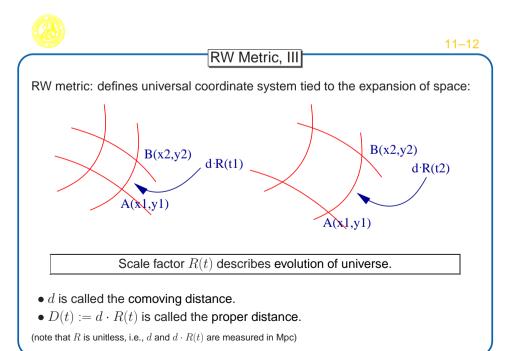
$$ds^{2} = c^{2} dt^{2} - R^{2}(t) \left[ dr^{2} + S_{k}^{2}(r) d\psi^{2} \right]$$
(11.4)

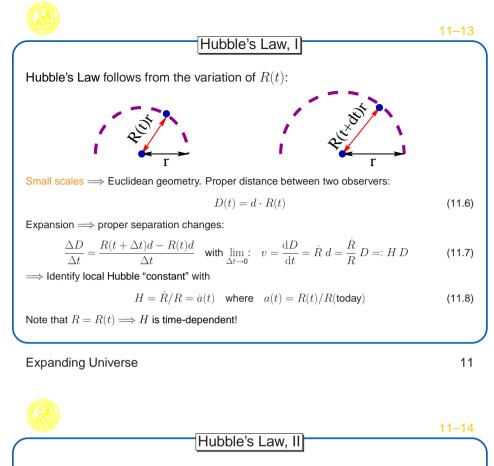
where R(t): scale factor, containing the physics, t: cosmic time, r,  $\theta$ ,  $\phi$ : comoving coordinates, and where

$$S_k(\theta) = \begin{cases} \sin \theta & \text{for } k = +1 \\ \theta & \text{for } k = 0 \\ \sinh \theta & \text{for } k = -1 \end{cases}$$
(11.5)

Remark:  $\theta$  and  $\phi$  describe directions on sky, as seen from the arbitrary center of the coordinate system (=us), r can be interpreted as a radial coordinate.

**Expanding Universe** 





The cosmological redshift is a consequence of the expansion of the universe:

Since the comoving distance is constant:

$$d = \frac{D(t = \text{today})}{R(t = \text{today})} = \frac{D(t)}{R(t)} = \text{const.} \tag{11.9}$$

Set a(t) = R(t)/R(t = today), then Eq. (11.9) implies

$$\lambda_{\rm obs} = \frac{\lambda_{\rm emit}}{a_{\rm emit}} \quad \Longleftrightarrow \quad z = \frac{\lambda_{\rm obs} - \lambda_{\rm emit}}{\lambda_{\rm emit}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm emit}} - 1 \tag{11.10}$$

(z: observed redshift,  $\lambda_{\rm obs}$ : observed wavelength,  $\lambda_{\rm emit}$ : emitted wavelength)

$$1+z = \frac{1}{a_{\text{emit}}} = \frac{R(t = \text{today})}{R(t)} \tag{11.11}$$

Light emitted at z = 1 was emitted when the universe was half as big as today!

z: measure for relative size of universe at time the observed light was emitted.

# Hubble's Law, III

For light,  $d = c\Delta t$ . Therefore

$$\frac{c \ \Delta t_{\rm e}}{R(t_{\rm emit})} = \frac{c \ \Delta t_{\rm obs}}{R(t_{\rm obs})} \quad \text{such that} \quad \frac{\mathrm{d}t}{R(t)} = \text{const.} \tag{11.12}$$

This means that

$$\frac{\mathrm{d}t_{\mathrm{obs}}}{\mathrm{d}t_{\mathrm{emit}}} = \frac{R(t_{\mathrm{obs}})}{R(t_{\mathrm{emit}})} = \mathbf{1} + z \tag{11.13}$$

 $\implies$  Time dilatation of events at large z.

This cosmological time dilatation has been observed in the light curves of supernova outbursts.

Expanding Universe

13

|                                                                                                                                                                                                          | 11–16   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Expansion and Spectra                                                                                                                                                                                    | 11-10   |
| The total number of photons in a box $\mathrm{d}A\cdot c\mathrm{d}t$ and in a frequency range $ u$ to $ u+\mathrm{d} u$ is                                                                               |         |
| $N = n_{\nu}(\nu) \mathrm{d}A \mathrm{d}\nu c \mathrm{d}t$                                                                                                                                               | (11.14) |
| This number is conserved during the expansion of the universe:                                                                                                                                           |         |
| $n_{\nu}(\nu_{\text{emit}}) \mathrm{d}A \mathrm{d}\nu_{\text{emit}} c \mathrm{d}t_{\text{emit}} = n_{\nu}(\nu_{\text{obs}}) \frac{d\nu_{\text{emit}}}{1+z} \mathrm{d}A c \mathrm{d}t_{\text{emit}}(1+z)$ | (11.15) |
| $n_{ u}( u_{obs}) \mathrm{d}A \mathrm{d} u_{obs}  c \mathrm{d}t_{obs}$                                                                                                                                   | (11.16) |
| but: arrival time differs $\Longrightarrow$ energy flux density changes:                                                                                                                                 |         |
| $F_{\nu}(\nu_{\rm obs}) = h\nu_{\rm obs}n_{\nu}(\nu_{\rm obs}) = h\frac{\nu_{\rm emit}}{1+z}\nu_n(\nu_{\rm emit}) = \frac{F_{\nu}(\nu_{\rm emit})}{1+z}$                                                 | (11.17) |
| and consequently the total flux in a certain energy band changes as well:                                                                                                                                |         |
| $F_{\rm obs} = \int F_{\nu}(\nu_{\rm obs}) \mathrm{d}\nu_{\rm obs} = \int \frac{F_{\nu}(\nu_{\rm emit})}{1+z} \cdot \frac{\mathrm{d}\nu_{\rm emit}}{1+z} = \frac{F_{\rm emit}}{(1+z)^2}$                 | (11.18) |
| One power of $1 + z$ from decreased photon energy, one from decreased arrival rate.                                                                                                                      |         |
| For wavelength based flux densities, since $F_{\lambda} = F_{\nu}c/\lambda^2$ one finds $F_{\lambda}(\lambda_{obs}) = F_{\lambda}(\lambda_{emit})/(1+z)^3$ .                                             |         |