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Question 1: Accretion Disks
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In this exercise we will be looking in more detail at the structure of thin accretion disks, i.e., at disks
for which the height of the disk, H, scales with distance R from the central compact object such that
H � R.

a) Accretion disks are strongly supersonic.

In order to get an order of magnitude feeling for the condition within the accretion disk, we will
first take a look at the vertical structure of a disk, i.e., at the z-direction. Since thin disks are gas
pressure supported, we will ignore radiation pressure. For a stationary system, this means that
the gravitational force in z-direction is balanced by the force due to the pressure gradient in that
direction. Convince yourself that the force due to a pressure gradient scales as
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where Pc is some characteristic pressure and ρc some characteristic density. Using these assumptions,
show that accretion disks must be strongly supersonic

(Hint: the speed of sound is cs =
√

P/ρ, the Kepler speed is vφ =
√

GM/R).

b) The vertical density decays exponentially
Convince yourself that the vertical density gradient in the accretion disk must scale as

nR(z) ∝ exp
(
−

z
H

)
(1.1)

where nR(z) is the particle density at radius R and height z (you can assume the disk to be isothermal).

c) Gas particles move on quasi-spherical orbits
In the lectures, it was claimed that the gas motion in the accretion disk is primarily on circular
orbits, or, in other words, that the radial velocity of gas in the disk, vR, is significantly smaller than
the Kepler speed, vφ. Using the same approximations as above, show that the radial acceleration
due to a radial gradient in gas pressure is negligable compared to the acceleration due to gravitation,
and that therefore vR � vφ.

d) Mass Conservation
In a stationary disk, the mass flow towards the black hole through the disk, Ṁ, must be conserved.
Assuming you know vR and using the surface density

Σ(R) =

∫
nR(z) dz (1.1)
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write down an equation connecting Ṁ and Σ(R) (this can be used to calculate the normalization
constant in Eq. (1.1)).

e) Angular Momentum Transport
Since the disk is rotating differentially, we need to transport angular momentum away. This is
somewhat tricky. . .

i) Calculate the specific angular momentum, i.e., the angular momentum per unit mass, for a ring
of the accretion disk that rotates with the Kepler speed, and convince yourself that the ring
material needs to loose angular momentum in order to move towards the black hole.

ii) To get rid of the angular momentum, viscous forces are invoked. The definition of the coefficient
of kinematic viscosity, ν, is such that the force per unit length of between two media moving
with relative speed ∆v with respect to each other can be written

F = νΣ · ∆v (1.1)

Calculate the total torque on a ring at distance R, G(R). To simplify your life it is useful to
write ∆v in terms of dΩ/dR where Ω is the angular velocity of the disk.

Ω =

√
GM
R3 (1.2)

iii) So far, you have calculated the torque between two rings. However, the disk consists of many
rings, and therefore the total torque available for balancing the change in angular momentum
is the net torque dG

dR only. Use this Ansatz to show that

νΣ =
Ṁ
3π

+
const.
R1/2 (1.1)

(Note: The change in angular momentum per unit time to be balanced by the torque is
ṀdL/dR)

iv) The constant in Equation (1.1) depends on the so-called inner boundary condition. For a black
hole, one often makes the assumption that no torque is acting at the inner edge of the accretion
disk, at radius R∗ (for black holes, R∗ = 6GM/c2, but this is not important here), i.e., that
dG/dR(R∗) = 0. Show that this means that

νΣ =
Ṁ
3π

[
1 −

(R∗
R

)1/2]
(1.1)

f) Temperature Profile
The energy dissipated per unit area can be calculated from

D(R) =
1
2
νΣ∆v2 (1.1)

Assuming the disk is optically thick, use the Stefan-Boltzmann law and your previous results to
determine the temperature profile of the accretion disk.

(Note: Do not forget that the disk has two sides. . . )

g) Total disk luminosity
Assuming the disk’s outer radius is at infinity, calculate the total luminosity of the accretion disk.
Compare your result with the total available energy.
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