Question 1: Temperature Diagnostics

In this exercise we will be looking at the atomic physics behind density diagnostics, using the [$\mathrm{O}_{\mathrm{III}}$] multiplets as an example. The relevant term scheme is shown at the left. In the following we will call the ${ }^{3} \mathrm{P}$ ground state level 1 , while ${ }^{1} \mathrm{D}_{2}$ is level 2 and ${ }^{1} \mathrm{~S}_{0}$ is level 3.
a) In plasmas of sufficiently low density, higher levels are excited via collisions but collisional deexcitation can usually be ignored, i.e., for two levels 1 , and 2 , we can assume $n_{\mathrm{e}} C_{21} \ll A_{21}$. Using this information write down the rate equations connecting levels 1,2 , and 3 and solve them for the density ratio n_{3} / n_{2}. You may assume that $C_{23}=0$.
b) For an optically thin plasma, the relation between the line intensity of a line at frequency ν_{ul} and the Einstein- A-coefficient is

$$
\begin{equation*}
4 \pi I_{v}=n_{\mathrm{u}} v_{\mathrm{ul}} A_{\mathrm{ul}} \tag{1.1}
\end{equation*}
$$

where u denotes the upper and 1 denotes the lower level. Derive an equation for the intensity ratio of the $4636 \AA$ and the sum of the $5007 \AA$ and the $4959 \AA$ ines (the latter shall be described by A_{21}), i.e., for $I(4363 \AA) /(I(5007 \AA)+I(4959 \AA))$.
c) The collisional excitation rate, $C_{j i}$, is given by

$$
\begin{equation*}
C_{j i}(T)=\int_{v_{\min }}^{\infty} v \sigma_{j i} f(v) d v \tag{1.2}
\end{equation*}
$$

where the minimum excitation velocity is

$$
\begin{equation*}
v_{\min }=\sqrt{2 E_{i j} / m_{\mathrm{e}}} \tag{1.3}
\end{equation*}
$$

and where the cross section is given in terms the collision strength, $\Omega_{j i}$, as

$$
\begin{equation*}
\sigma_{j i}(v)=\left(\frac{\pi h^{2}}{4 \pi^{2} m_{\mathrm{e}}^{2} v^{2}}\right) \frac{\Omega_{j i}}{g_{j}} \tag{1.4}
\end{equation*}
$$

i) For a thermal plasma with a Maxwellian velocity distribution

$$
\begin{equation*}
f(v)=\sqrt{\frac{2}{\pi}\left(\frac{m_{\mathrm{e}}}{k T}\right)^{3}} \cdot v^{2} \cdot \exp \left(-\frac{m v^{2}}{2 k T}\right) \tag{1.5}
\end{equation*}
$$

show that

$$
\begin{equation*}
C_{j i}=\sqrt{\frac{h^{4}}{8 \pi^{3} m_{\mathrm{e}}^{3} k}} \cdot \frac{\Omega_{j i}}{g_{j}} \cdot T^{-1 / 2} \cdot \exp \left(-\frac{E_{i j}}{k T}\right) \tag{1.6}
\end{equation*}
$$

- It will be useful to know that

$$
\begin{equation*}
\int x \exp \left(-k x^{2}\right) d x=-\frac{1}{2 k} \exp \left(-k x^{2}\right) \tag{1.7}
\end{equation*}
$$

- Inserting all constants, the square-root evaluates to $8.629 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
ii) Show that $I(4363 \AA) /(I(5007 \AA)+I(4959 \AA))$ depends only on temperature and on atomic constants.
d) (To be done at home with a computer) For [$\mathrm{O}_{\mathrm{III}}$], the relevant atomic constants are $E_{32}=2.84 \mathrm{eV}$, $A_{32}=1.8 \mathrm{~s}^{-1}, A_{31}=0.221 \mathrm{~s}^{-1}, \Omega_{13}=0.28$, and $\Omega_{12}=2.17$. Plot the line ratio.

Note: that for densities around the critical density, de-excitation cannot be ignored, which will result in more complicated equations (see lecture notes). For [$\mathrm{O}_{\mathrm{III}}$] the critical density of the ${ }^{1} \mathrm{D}_{2}-{ }^{3} \mathrm{P}_{2}$-transition is $8.6 \times 10^{4} \mathrm{~cm}^{-3}$.

