Endstadien der Sternentwicklung Scheinseminar Astro- und Teilchenphysik (WS 2009/10) Friedrich-Alexander-Universität Erlangen-Nürnberg

Thomas Gabor

07. Dezember 2009

Die Entdeckung von Sirius B

1844: F. Bessel stellt nicht-geradlinige Bewegung von Sirius fest

Die Entdeckung von Sirius B

- 1844: F. Bessel stellt nicht-geradlinige Bewegung von Sirius fest und deutet sie als Wirkung eines Doppelsternpartners
- 1862: Sirius B entdeckt von A. G. Clark (visuell!)
- 1915: Spektroskopische Aufnahmen deuten auf hohe Temperatur hin
 - ⇒ zusammen mit hoher Masse (aus Umlaufdauer) und kleinem Radius (geringe Leuchtkraft) folgt daraus eine extrem hohe Dichte
- 1925: von W. Adams anhand der spektralen Rotverschiebung bestätigt
 - ⇒ neue Art von Stern: Weißer Zwerg

[NASA/ESA]

Sirius A und sein Begleiter Sirius B (The "Dog Star" and its "Pup") aufgenommen mit dem Hubble Space Telescope (2003)

Endstadien der Sternentwicklung - Inhalt

Weiße Zwerge

- Entstehung und Entwicklung
- 2 Gleichgewichtszustand bei Entartung
- innerer Aufbau und Eigenschaften
- Chandrasekhar-Grenze

3 Neutronensterne

- Aufbau
- Eigenschaften
- Oppenheimer-Volkov-Limit

4 Schwarze Löcher

- Allgemeine Relativitätstheorie
- Nachweis
- Ausblick

Entstehung und Entwicklung

- Endstadium für Sterne mit $M \lesssim 8 M_{\odot}$
- Am Ende des Riesenstadiums: Strahlungsdruck stößt äußere Schichten ab (Planetarischer Nebel)
- übrig bleibt heißer Kern (= Weißer Zwerg) mit typischerweise
 - $M_{\rm WD} \sim 0.6 M_{\odot}$
 - *R*_{WD} ~ Erdradius!
- kühlt sehr langsam ($\sim 10^{15}\, {\rm yr}^{\ *})$ aus
- dabei kristallisiert der Kern kontinuierlich von innen nach außen ("diamond in the sky")
- → Endstadium: Schwarzer Zwerg

^{*}nach Barrow & Tipler

Thomas Gabor

Hydrostatisches Gleichgewicht

Sterne befinden sich ganz allgemein im hydrostatischen Gleichgewicht:

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM(r)\rho(r)}{r^2}$$

Ionisiertes Gas in einem (Hauptreihen-) Stern ist dabei gut beschreibbar als ideales Gas:

$$P=P_{\mathsf{gas}}+P_{\mathsf{rad}}=rac{k_B}{\mu m_H}
ho T+rac{1}{3}$$
a T^4

(Gasdruck P_{gas} + Strahlungsdruck P_{rad})

- → Wesentlich zur Aufrechterhaltung des Drucks ist eine hohe Temperatur
- \implies Energiequelle nötig, die Gas erhitzt! (= Kernfusion)

Running out of gas?

lst z.B. für einen massarmen Stern (~ M_{\odot}) der Wasserstoff im Kern verbraucht, kontrahiert der He-Kern

- \implies Temperatur und Dichte steigen stark an
- \implies für zu hohe Dichten ($\rho\sim 10^7~{\rm kg/m^3})$ gilt aber die Zustandsgleichung des idealen Gases nicht mehr
- \longrightarrow quantenmechanische Effekte werden wichtig, sog. Entartung tritt ein
- \longrightarrow der Entartungsdruck wirkt dem Kernkollaps entgegen
- Im Endstadium eines Sterns findet schließlich keinerlei Fusion mehr statt.
- ⇒ Entartung spielt für den Endzustand die zentrale Rolle!

- Heißenberg'sche Unschärferelation $\Delta \vec{p} \cdot \Delta \vec{x} \ge h^3$ gibt kleinste Phasenraumzelle vor
- nach Pauli-Prinzip finden hier max. zwei Elektronen (Spin \uparrow und \downarrow) Platz

bei genug "Platz"

- keine Wechselwirkung
- → ideales Gas
- \implies thermischer Druck

- Heißenberg'sche Unschärferelation $\Delta \vec{p} \cdot \Delta \vec{x} \ge h^3$ gibt kleinste Phasenraumzelle vor
- nach Pauli-Prinzip finden hier max. zwei Elektronen (Spin ↑ und ↓) Platz

für hohes ρ oder $T \rightarrow 0$

- → es wird eng im Phasenraum
- Entartung tritt ein
- → Entartungsdruck

A Maxwellverteilung

- B Entartung tritt ein
- C Entartung steigt

Entartungsdruck

Berechnung des Entartungsdrucks:

• Mit Impuls im Bereich [p, p + dp] und Gasvolumen V beträgt das gesamte verfügbare Phasenraumvolumen der Elektronen:

$$4\pi p^2 dp V$$

- \implies Elektronenzahl im Impulsintervall: $dN = 2 \cdot \frac{4\pi p^2 dpV}{k^3}$
- \implies alle Elektronen haben $p < p_0$ (vollständige Entartung):

$$N=\frac{8\pi V}{3h^3}p_0^3$$

 \implies Fermi-Impuls:

$$p_0 = \left(\frac{3}{\pi}\right)^{1/3} \frac{h}{2} \left(\frac{N}{V}\right)^{1/3}$$

Entartungsdruck II

mit $E = \int \epsilon dN$ ergibt sich als Druck:

• nicht-relativistisches Gas $(\epsilon = p^2/2m_e)$

$$P = \frac{2}{3}\frac{E}{V} = \frac{1}{20}\left(\frac{3}{\pi}\right)^{\frac{5}{3}}\frac{h^2}{m_e} \cdot \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

• (extrem) relativistisches Gas $(\epsilon = cp)$

$$P = \frac{1}{3}\frac{E}{V} = \frac{1}{8}\left(\frac{3}{\pi}\right)^{\frac{1}{3}}hc \cdot \left(\frac{N}{V}\right)^{\frac{4}{3}}$$

Für ein entartetes Elektronengas gilt also:

 $P\sim \left\{ egin{array}{cc}
ho^{5/3} & ({
m nicht-relativistisch}) \
ho^{4/3} & ({
m relativistisch}) \end{array}
ight.$

 \implies unabhängig von T!

Masse-Radius-Beziehung

• Entartungsdruck muss hydrostatische Gleichgewichts-Bedingung erfüllen

hydrostatischer Druck (im Zentrum):

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM_r\rho}{r^2} = -\frac{G(\frac{4}{3}\pi r^3\rho)\rho}{r^2}$$
$$\longrightarrow P(0) = \frac{2}{3}G\rho^2 R^2 \sim \frac{M^2}{R^4}$$

nicht-rel. Entartungsdruck:

$$\implies P \sim \rho^{5/3} \sim \frac{M^{5/3}}{R^5}$$

Gleichsetzen:

$$\rightarrow M \cdot R^3 = \text{const}$$

Masse-Radius-Beziehung II

Aufbau

Elemente durch Gravitation sortiert

→ geschichteter Aufbau mit entartetem He-, C-O- oder O-Ne-Mg-Kern (+ He-Schale), abh. von Vorgänger-Stern

Je nach Spektrum unterscheidet man die Spektraltypen:

- DA: H-Linien sichtbar (2/3 aller Weißen Zwerge)
- DB: nur He sichtbar ($\sim 8\%$)
 - \longrightarrow DB sind vollständig frei von H, ansonsten würde es an Oberfläche "schwimmen"
- DC: keine Linien, nur Kontinuum (14%)

Masse-Radius-Beziehung III

Masse-Radius-Beziehung III

ABER:

- bereits für Sirius B ($M \approx 1 M_{\odot}$) Elektronen $\frac{1}{3}c$ schnell!
- \longrightarrow relativistische Rechnung erforderlich ab $\rho \sim 10^9 \ \rm kg/m^3!$
 - S. Chandrasekhar (1931): Für Weiße Zwerge exisitiert Massenobergrenze $M_{\rm Ch} \approx 1.44 \, M_{\odot}$ (Chandrasekhar-Masse)

Jenseits des Chandrasekhar-Limits

in Sternen mit $M_{\rm ZAMS}\gtrsim 8M_\odot$ sind im Kern letztlich die Bedingungen gegeben um Si zu Fe zu verbrennen

[Jane Meredith, 1989]

- T hoch genug für Photodesintegration: $\begin{array}{r} {}^{56}_{26}\text{Fe} + \gamma \rightarrow 13 \ {}^{4}_{2}\text{He} + 4n \\ {}^{4}_{2}\text{He} + \gamma \rightarrow 2\text{p}^{+} + 2n \end{array}$
- Elektroneneinfang: $p^+ + e^- \rightarrow n + \nu_e$
- ⇒ Entartungsdruck der e[−] fehlt plötzlich
- ⇒ schneller Kollaps des Kerns
 - \longrightarrow Kernkollaps-Supernova
 - \longrightarrow übrig bleibt Neutronenstern mit $R_{
 m NS} \sim 10-15\,
 m km$

Aufbau

Aufbau des entstandenen Überrestes

- Druck hauptsächlich durch entartete Neutronen
- innere Struktur noch nicht völlig klar (insbesondere für $\rho > \rho_{\text{Atomkern}}$)
- \longrightarrow Modell für $M_{\rm NS} = 1.4 M_{\odot}$:

- äußere Kruste: Fe-Kerne, (relativistisch) entartete Elektronen
- innere Kruste: schwere Kerne, rel. ent. e⁻, superfluide n
- im Inneren: rel. ent. e⁻, superfluide n, supraleitende p⁺
- Kern: evtl. Pion-Kondensat, Quark-Gluon-Plasma

Abschätzung der Rotationsperiode

Während des Kern-Kollaps bleibt Drehimpuls $J = I\omega = \frac{2}{5}MR^2\omega$ erhalten:

$$\longrightarrow \omega_{\rm NS} = \left(\frac{R_{\rm Kern}}{R_{\rm NS}}\right)^2 \omega_{\rm Kern} \qquad \& \qquad P_{\rm NS} = \left(\frac{R_{\rm NS}}{R_{\rm Kern}}\right)^2 P_{\rm Kern}$$

• aus den Masse-Radius-Beziehungen für NS und WD (komplett aus Fe):

$$\frac{R_{\rm NS}}{R_{\rm Kern}}\approx 512$$

• Als Abschätzung: beobachtete Periode von Weißem Zwerg 40 Eridani B

$$P_{\mathsf{Kern}} = 1350\,\mathrm{s}$$

 $\implies P_{\rm NS} = 5 \cdot 10^{-3} \, {\rm s}$

⇒ Neutronensterne rotieren äußerst schnell!

Magnetfeld

 Magnetischer Fluss Φ bleibt bei Kern-Kollaps in leitendem Fluid "eingefroren"

$$\Phi = \oint_{S} \vec{B} d\vec{A}$$

- $\longrightarrow B_{\mathrm{Kern}} \cdot R_{\mathrm{Kern}}^2 = B_{\mathrm{NS}} \cdot R_{\mathrm{NS}}^2$
- \implies typischerweise $B_{
 m NS} \sim 10^8\,
 m T$
 - \rightarrow Leuchtturm-Modell \rightarrow Pulsare

Temperatur und Strahlung

ullet bei Entstehung während Supernova: ${\cal T}_{\rm NS}\sim 10^{11}\,{\rm K}$

ŀ

• während des ersten Tages sehr effektive Kühlung durch URCA-Prozess (Neutrino-Abstrahlung):

$$n
ightarrow p^+ + e^- + \overline{
u}_e$$
 $p^+ + e^-
ightarrow n +
u_e$

- URCA-Prozess endet mit einsetzender Entartung (Kerntemperatur 10⁹ K)
- \longrightarrow beobachtet typischerweise $\sim 10^5\,{
 m K}$

Schwarzkörperstrahlung:

- $L_{NS} \sim L_{\odot}$, aber: $\lambda_{\max} \approx 3 \mathrm{mm} \cdot \frac{\mathrm{K}}{T} = 30 \mathrm{nm}$
- \implies Peak im UV,
- ----- beobachtet aber nur Röntgen-Anteil im Spektrum (Absorption)

Oppenheimer-Volkov-Limit

Oppenheimer-Volkov-Limit

- auch für Neutronensterne gilt Masse-Radius-Beziehung wie bei Weißem Zwerg: $M_{NS} \cdot V_{NS} = const.$
- für zu große Massen wird Schallgeschwindigkeit größer als c
- ⇒ kein stabiles Gleichgewicht mehr möglich

Oppenheimer-Volkov-Limit

- auch für Neutronensterne gilt Masse-Radius-Beziehung wie bei Weißem Zwerg: $M_{NS} \cdot V_{NS} = const.$
- für zu große Massen wird Schallgeschwindigkeit größer als c
- ⇒ kein stabiles Gleichgewicht mehr möglich

Deshalb auch hier wieder Massenobergrenze (Oppenheimer-Volkov-Masse)

- \rightarrow für einen statischen Neutronenstern $M_{\rm OV} \sim 2.2 M_{\odot}^*$ und einen schnell rotierenden $\sim 2.9 M_{\odot}^*$
- \longrightarrow gebräuchlich: $M_{\rm OV} \sim 3 M_{\odot}$
- \longrightarrow Für höhere Massen kann dem Kollaps nichts entgegengesetzt werden, Graviationskraft überwiegt!
- → Das Ergebnis ist ein Schwarzes Loch

*nach Kalogera & Baym

Simulation eines Schwarzen Lochs vor der Milchstraße

Warum sind "Schwarze Löcher" schwarz?

Für Fluchtgeschwindigkeit muss gelten:

$$0 \stackrel{!}{\leq} E_{pot} + E_{kin} = -G \frac{Mm}{R} + \frac{1}{2}mv^2$$
 $\implies v_{escape} \geq \sqrt{\frac{2GM}{R}}$

- \rightarrow Ein schwarzes Loch ist ein Objekt mit Masse M und Radius R, für welches v_{escape} größer ist als die Lichtgeschwindigkeit c.
- \longrightarrow das ist der Fall für:

$$R \leq R_S = \frac{2GM}{c^2} \approx 3 \,\mathrm{km} \cdot \frac{M}{M_{\odot}}$$

 \rightarrow Von innerhalb des Schwarzschild-Radius R_S dringt keinerlei Information nach außen ($R_S =$ Ereignis Horizont)

Die Krümmung des Raumes

Copyright C Addison Wesley

Albert Einstein 1916: Allgemeine Relativitätstheorie

- in Abwesenheit von Masse ist der Raum "flach"
- Masse krümmt den Raum (genauer: Die Metrik des Raums)
- Krümmung senkrecht zu den 4 Raum-Zeit-Dimensionen

ightarrow Schwarzschild Metrik beschreibt Krümmung aufgrund Masse M

$$(\mathrm{d}s)^2 = (c\mathrm{d}t)^2 \cdot \left(1 - \frac{R_S}{r}\right) - (\mathrm{d}r)^2 \cdot \left(1 - \frac{R_S}{r}\right)^{-1} - (r\mathrm{d}\theta)^2 - (r\sin\theta\mathrm{d}\phi)^2$$

Schwarzes Loch akkretiert Gas von einem Begleiter-Stern

Formung einer Akkretionsscheibe $(T \sim 10^7 K)$

⇒ Röntgen-Strahlung

Nachweis

Akkretion

Energiefreisetzung bei Akkretion von Material m aus ∞ nach R_S :

$$\Delta E_{\rm acc} = \frac{GM_{\rm BH}m}{R_S} = \frac{1}{2}mc^2$$
$$\frac{\Delta E_{\rm acc}}{\rm kg} \approx 10^{17}\frac{\rm J}{\rm kg}$$

Nachweis

Akkretion

Energiefreisetzung bei Akkretion von Material m aus ∞ nach R_S :

$$\Delta E_{acc} = \frac{GM_{BH}m}{R_S} = \frac{1}{2}mc^2$$
$$\frac{\Delta E_{acc}}{kg} \approx 10^{17} \frac{J}{kg}$$
$$4 \frac{}{_1}^1 H \rightarrow_2^4 He + \Delta E_{nuc}$$

Zum Vergleich: Fusion

$$\begin{split} & 4 \ _1^1 \text{H} \rightarrow _2^4 \text{He} + \Delta E_{\text{nuc}} \\ & \frac{\Delta E_{\text{nuc}}}{\text{kg}} \approx 6 \cdot 10^{14} \frac{\text{J}}{\text{kg}} \end{split}$$

⇒ Es gibt keine effizientere astrophysikalische Energiequelle als Akkretion!

Massenbestimmung und Nachweis

[K. Pottschmidt, J. Wilms, et al.]

- Röntgenquelle
- → Suche nach sichtbarem Begleiter in Binär-System
- \rightarrow 3. Kepler'sche Gesetz
- \Rightarrow Massenfunktion MF₂

$$\mathsf{MF}_2 = \frac{M_2^3 \cdot \sin i}{(M_1 + M_2)^2} = \frac{v_1^3 P}{2\pi G}$$

- $v_1 = beobachtete Bahngeschw.,$
- P = Umlaufperiode
- $\bullet~MF$ ist untere Grenze für M_2
- \rightarrow erster BH-Kandidat: Cygnus X-1 (1965)

Massen

[J. A. Orosz, 2007]

Ausblick

Ausblick und post-Einstein

- $\bullet\,$ nach $\sim 10^{15}\,\rm yr$ alle Sterne ausgebrannt
- Überreste kombinieren zu schwarzen Löchern
- \rightarrow diese bestehen nach klassischen ART für immer

- → aber 1974, Stephen Hawking: Schwarze Löcher verdampfen langsam:
- Paarerzeugung aus Gravitationsenergie außerhalb *R*_S
- → entkommt ein Teilchen, wird Energie fortgetragen (Hawking Strahlung)
- $\rightarrow \mbox{ Rate } \sim \mbox{$1/$M^2$, letztendlich großer}$ Ausbruch

• Zeit bis dahin:
$$\sim \left(\frac{M}{M_{\odot}}\right)^3 \cdot 10^{67} \, \mathrm{yr}$$

Quellen

Quellen

Bildnachweis:

- 2 http://outreach.atnf.csiro.au/education/senior/astrophysics/binary_types.html
- 3 http://www.spacetelescope.org/images/html/heic0516a.html
- 5 http://www.atlasoftheuniverse.com/hr.html
- 8 Thomas Gabor
- 9 http://www.vikdhillon.staff.shef.ac.uk/teaching/phy213/phy213_degeneracy.html
- 13 http://abyss.uoregon.edu/~js/ast122/lectures/lec17.html
- 14 Jörn Wilms: Einführung in die Astronomie
- 16 http://www.ifa.hawaii.edu/~barnes/ast110_06/tooe.html#[13]
- 17 Thomas Gabor
- 19 http://innumerableworlds.wordpress.com/2009/04/02/planet-hunting-toolkit-v-pulsar-timing/
- 22 http://jcconwell.files.wordpress.com/2009/07/black_hole_milkyway.jpg
- 24 http://cse.ssl.berkeley.edu/bmendez/ay10/2002/notes/lec15.html
- 25 http://www.physics.ucsb.edu/~khenisey/graphics/
- 27 Jörn Wilms: Astrophysik galaktischer Schwarzer Löcher
- 28 http://mintaka.sdsu.edu/faculty/orosz/web/
- 29 http://www4.nau.edu/meteorite/Meteorite/Book-GlossaryH.html
- Quellen:
 - H. Kartunnen, et. al.: "Astronomie Eine Einführung", Springer-Verlag Berlin heidelberg New York (1990)
 - B. W. Caroll, D. A. Ostlie: "An Introduction to Modern Astrophysics", Pearson Education, Inc. (2007)
 - J. Wilms: Vorlesungen zur Einführung in die Astronomie (2006-2009)
 - www.wikipedia.org (nov. 2009)