Sternenentwicklung

Scheinseminar Astro- und Teilchenphysik SoSe 2010

Fabian Hecht 29.04.2010

Friedrich-Alexander-Universität Erlangen-Nürnberg

Motivation

- Sternenentwicklung nur beschreibbar mit Wissen über Sternenaufbau
- → 4 Zentrale Grundgleichungen zusammen mit Zustandsgleichungen und Zusammensetzung des Sterns
 - Experimenteller Befund: Hertzsprung–Russell–Diagramm (HRD)
- → Vergleich der Theorie mit HRD zur Verifizierung der theoretischen Beschreibung der Sternenentwicklung

1. Gleichung: Massenerhaltung

$$dm(r) = 4\pi \cdot r^2 \cdot \rho(r)dr \tag{1}$$

Bemerkung

- Durch Energie und Teilchenabstrahlung geht Energie verloren, Verlus ist bei Sternen auf der Hauptreihe allerdings vernachlässigbar gering (wenige tausend Tonnen/s)
- Nur bei riesigen Sternen ($M > 30 M_{\odot}$) kann durch Sonnenwind ein signifikanter Massenverlust auftreten (0.01 M_{\odot} /Jahr)

Hydrostatisches Gleichgewicht

- Die Gravitation zwingt Teilchen im Stern nach innen
- ightarrow Falls keine anderen Kräfte vorhanden (Zentrifugalkraft), folgt Sternform der Symmetrie der Gravitationskraft ightarrow Sphäre
 - Innerer Druck des Sterns muss Kollaps verhindern \rightarrow essentielle Formel für die Stabilität der Sterne
- \rightarrow Auftrieb = -Gravitation

Hydrostatisches Gleichgewicht - kurze Herleitung

$$\frac{dP}{dr} = -\rho \cdot G \frac{m}{r^2} \tag{2}$$

- Zustandsgleichung verknüpft P, ρ und T (ideale Gasgleichung)
- Bei Entartung ändert sich Zustandsgleichung

Hydrostatisches Gleichgewicht - Bemerkungen

- Energie benötigt um Druck aufzubauen
- Woher bekommen Teilchen Energie?
 - Gravitationsenergie wird durch Kontraktion frei
 - Kernreaktionen liefern Energie durch Massendefekt (Strahlungsdruck bei Hauptreihensternen vernachlässigbar)

Bemerkung

Ideale Gasgleichung gültig bis ca. $T=10^7$ K und $\rho=10^6\frac{\mathrm{kg}}{\mathrm{m}^3}$ \rightarrow , bei höheren Dichten tritt Fermi-Dirac Entartung auf (für HR–Sterne unbedeutend).

Vollständige Entartung des Elektronengases

Nähere Betrachtung dieser Problematik:

- Tritt auf bei hohen Dichten und vergleichsweise niedrigen Temperaturen
- Einsperrung der Teilchen in Phasenraumvolumen nahe der Grenze $\Delta V \cdot \Delta p^3 = h^3$ erlaubt max. 2 gleiche Fermionen pro Zelle
- → Vollständige Entartung (Elektronen werden von unten in Energieniveaus "eingefüllt") tritt auf
- → Weitere Verdichtung des Sterns viel schwerer, da Pauli-Prinzip überwunden werden muss

Beispiel

Weiße Zwerge ($\rho \simeq 10^9 \frac{\text{kg}}{\text{m}^3}$) erreichen Entartung (Druck bei $P \simeq 3 \cdot 10^{21}$ Pa, das ist 10^5 mal höher als bei einem idealen Gas derselben Dichte).

Zustandsgleichung des entarteten Elektronengases

$$P_{e(\text{n.rel})} = \frac{1}{5m_e} \left(\frac{3h^3}{8\pi}\right)^{2/3} n_e^{5/3} \quad (3)$$

$$P_{e(\text{rel})} = \frac{c}{4} \left(\frac{3h^3}{8\pi}\right)^{1/3} n_e^{4/3} \quad (4)$$

$$P_{e(rel)} = \frac{c}{4} \left(\frac{3h^3}{8\pi} \right)^{1/3} n_e^{4/3}$$
 (4)

Bemerkungen:

- Nukleonendruck vernachlässigbar
- $P_{e(\text{n.rel})} \propto \rho^{5/3}$ $P_{\rm e(rel)} \propto
 ho^{4/3}$

Wichtige Folgen der Entartung für Sterne der Endphase

Nicht-relativistische Entartung (weiße Zwerge):

- Eine Abschätzung aus dem hydrostat. GG : $P \propto \rho GM/R$
- Mit $\rho \propto M/R^3$ folgt

$$R \propto M^{-1/3} \tag{5}$$

Masse-Radius Beziehung weißer Zwerge

Wichtige Folgen der Entartung für Sterne der Endphase

- Chandrasekhar Limit

Zur Betrachtung der Stabilität notwendig:

- Hydrostatisches Gleichgewicht
- 2 Verknüpfung zwischen P und ρ
 - ullet Verknüpfung bei entarteten Gasen direkt, **ohne** T!
 - Rel.: $P \propto \rho^{4/3}$ (n = 3), N-Rel.: $P \propto \rho^{5/3}$ (n = 3/2)
 - Allgemein: $P = K \cdot \rho^{\gamma} = K \cdot \rho^{1 + \frac{1}{n}}$, Polytrope Relation
 - Lösung führt auf Lane-Emden Gleichung

Wichtige Folgen der Entartung für Sterne der Endphase – Chandrasekhar Limit

Auswertung führt auf allgemeine Masse-Radius Beziehung von polytropen Flüssigkeiten:

$$R \propto M^{\frac{1-n}{3-n}} \tag{6}$$

- → Bei n = 3 wird R = 0!
- $\rightarrow M \propto R^{\frac{3-n}{1-n}} = R^0$, M unabh. von R!
- → Nur eine Masse möglich bei relativistisch degeneriertem Elektronengas!

Wichtige Folgen der Entartung für Sterne der Endphase

- Chandrasekhar Limit

$$M_{Ch} = \frac{5.836}{\mu_e^2} M_{\odot} \qquad (7)$$

Chadrasekhar Masse

Bedeutung

Erreicht ein weißer Zwerg diese Grenzmasse ($M_{Ch} \simeq 1.44 M_{\odot}$), wird sein vollständig degeneriertes Elektronengas relativistisch und der Radius strebt gegen $0 \Rightarrow$ Kontraktion bis andere Effekte wieder Stabilität garantieren.

3. Gleichung: Das thermische Gleichgewicht

$$q = \frac{dF}{dm}$$
 oder $\frac{dF}{dr} = 4\pi r^2 \rho q$ (8)

F: Wärme, die durch Kugeloberfläche mit innerer Masse m pro Zeit fließt; q: Rate der nuklearen Energie die pro Masseneinheit und Zeit erzeugt wird.

Motivation

- Es gilt dU = dQ pdV
- Im thermodyn. GG müssen innere Energie und Volumen gleichbleiben
- \rightarrow dQ=0 \Rightarrow Energie die durch nukleare Prozesse erzeugt wird, muss nach außen abgestrahlt werden
 - Erzeugte Energie = abgestrahlte Energie , F(M) = L

4. Gleichung: Energietransport durch Strahlung

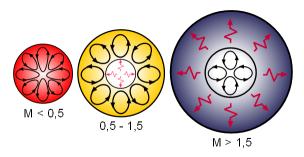
$$\frac{dT}{dr} = -\frac{3\kappa\rho}{4acT^3} \frac{F(r)}{4\pi r^2}$$
 (9)

 κ : Opazität, a: Strahlungskonstante

Bemerkungen

- Exponentiell abfallender Fluss
- Abfall auf $1/e~(1/\kappa\rho)$ wird als mittlere freie Photonenweglänge bezeichnet
- Größenordnung: wenige $cm! \rightarrow$ Energietransportgleichung als Diffusionsgleichung formulierbar
- ightarrow Temperatur fällt hier um 0.001 K ightarrow Transport durch Strahlung dauert sehr lange, Strahlung wird fast vollständig von nächster Schicht absorbiert ightarrow Sehr guter Schwarzer Strahler!

Energietransport durch Konvektion


Also: Der Energietransport durch Strahlung dauert lange \Rightarrow hohe Temperaturgradienten stellen sich ein

- Konvektion setzt bei genügend hohem T-gradienten ein
- ightarrow Wird viel Energie produziert (CNO–Zyklus; $M>1.5M_{\odot}$), tritt Konvektion im Kern auf
- ightarrow Wird weniger Energie produziert (p–p Kette; $M < 1.5 M_{\odot}$), tritt keine Konvektion im Kern auf
 - Konvektion an Rändern möglich, bei kleinen Sternen bis in den Kern

Energietransport durch Konvektion

Auftreten von Konvektion bei Sternen verschiedener Masse, *Quelle:* www.wikipedia.de

Energieerzeugung bei Hauptreihensternen

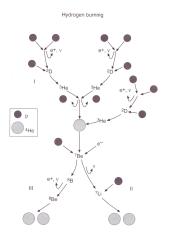
Woher Energie?

- Gravitation (Lebensdauer der Sterne: 30 Millionen Jahre)
- Kernfusion
 - Ab $M=0.07M_{\odot}$ ist Fusion von H zu He möglich (darunter kann nur D zu ³He fusioniert werden)
 - Erster einsetzender Fusionsvorgang: p-p Kette (Fusion von H zu ⁴He)

Energieerzeugung

p-p Kette

Wie läuft Fusionsvorgang ab?


- gleichzeitiger Zusammenstoß von 4 Protonen sehr unwahrscheinlich
- → Kette von Einzelreaktionen führt ans Ziel
- → Unterschiedliche Abzweigungen zum Endprodukt ⁴He möglich (p-p I Kette, p-p II Kette, p-p III Kette)

Energieerzeugung

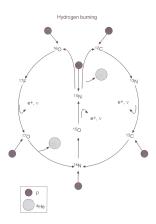
p-p Kette: Diagramm

Darstellung der Fusion von Wasserstoff zu Helium, *Quelle:* Prialnik, Stellar Structure and Evolution

p-p Kette: Bemerkungen

Bemerkungen:

- p-p I Kette dominiert bis ca. $1.3 \cdot 10^7$ K
- p-p II Kette dominiert im Bereich $1.3 \cdot 10^7 \text{K} < T < 3 \cdot 10^7 \text{K}$
- p-p III Kette ist ab $3 \cdot 10^7 \text{K}$ der entscheidende Vorgang der p-p Ketten


ABER: CNO–Zyklus setzt ein und macht p–p III Kette für Energieerzeugung unbedeutend

Energieerzeugngsrate und Effizienz

- Energieerzeugungsrate der p–p Kette: $q_{p-p} \propto \rho T^4$
- Erzeugte Energie/Nukleon: 6.55 MeV

CNO-Zyklus: Diagramm

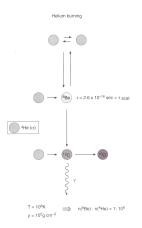
CNO-Zyklus, Quelle: Prialnik, Stellar Structure and Evolution

Energieerzeugngsrate und Effizienz

- Energieerzeugungsrate des CNO–Zyklus: $q_{CNO} \propto
 ho \, T^{16}$
- → Ab 2 · 10⁷K dominiert der CNO–Zyklus die Energieproduktion
- Erzeugte Energie/Nukleon: 6.25 MeV

Von Wasserstoff zu Eisen

Was passiert, wenn der Wasserstoff verbrannt ist?


- Weitere nukleare Entwicklung hängt von Masse des Sterns ab
 → später!
- Bei genügend hoher Masse \rightarrow Heliumbrennen (triple- α -Reaktion)
- **Problem:** ${}^{4}\text{He}^{+}{}^{4}\text{He} \longrightarrow {}^{8}\text{Be hat } \tau_{Be} = 2.6 \cdot 10^{-16}\text{s}$
- **Lösung:** Hohe Dichte und Teilchenzahl macht Reaktion zu 12 C möglich! (Benötigte Temperatur $\sim 10^8$ K)

Nukleare Entwicklung

triple– α –Reaktion: Diagramm

triple- α -Reaktion, Quelle: Prialnik, Stellar Structure and Evolution

Weitere nukleare Entwicklung

Einsetzende Prozesse:

- Kohlenstoffbrennen setzt bei $T \approx 5 \cdot 10^8 \text{K}$ ein (2 Kohlestoffkerne fusionieren zu Mg, Na, Ne oder O)
- 2 Ab $\sim 10^9 \text{K}$ kann das Sauerstoffbrennen einsetzen (P, S, Mg und Si werde erzeugt)
- Stop bei Si-Brennen: Eine weitere Nukleosynthese ist aufgrund der hohen Coulombbarriere unmöglich → Photodisintegration ermöglicht Austausch von Nukleonen und somit Elemente bis Fe
- Fusion zu höheren Elementen als Fe wäre endotherm, die Stabilität des Sterns wäre nicht mehr gewährleistet
 - → Fusionskette endet bei Eisen!

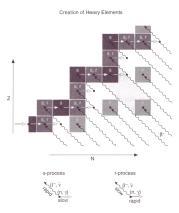
Nukleare Entwicklung

Fusionprozesse im Überblick

Brennstoff	Prozess	T-schwelle (10 ⁶ K)	Produkte	E/Nukl. (MeV)
Н	p-p	4	He	6.55
Н	CNO	15	He	6.25
He	3α	100	C, 0	0.61
С	C+C	600	O, Ne, Na, Mg	0.54
0	0+0	1000	Mg, S, P, Si	0.3
Si	Nukl. GG	3000	Co, Fe, Ni	< 0.18

Vergleich der Fusionsprozesse, Quelle: Prialnik, Stellar Structure and Evolution

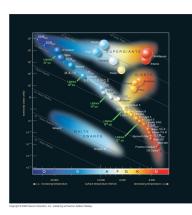
Was passiert nach der Kernfusion?


Wie entstehen höherwertige Elemente als Eisen, z.B. Uran?

- In Sternen der Endphase (Riesen) enstehen hohe Neutronendichten
- ullet Neutronen sind ladungsneutral o keine Coulombbarriere
- \rightarrow Neutronen lagern sich an Kerne an
 - \bullet In so entstanden Isotopen können durch $\beta^-\mathrm{-Zerfall}$ Protonen erzeugt werden
- → höherwertige Elemente entstehen

r- und s-Prozess

Enstehung höherwertiger Elemente, Quelle: Prialnik, Stellar Structure and Evolution


Unterscheidung s–(slow), r–(rapid) Prozess

- ullet s-Prozess bei niedrigeren Neutronendichten $ightarrow eta^-$ -Zerfall oft viel schneller als erneute Neutronenanlagerung $(au=1000a)
 ightarrow {
 m Elemente}$ bis Massenzahl 210 werden erzeugt
- r-Prozess ist schneller, tritt bei extrem hohen Neutronendichten auf (Supernovae, Zusammenstoff von Neutronensternen?) → Elemente wie Uran und Thorium können generiert werden

Motivation

HRD-Diagramm, Quelle: university of georgia, www.physast.uga.edu

Warum HRD?

- leicht zugängliche Messgrößen Leuchtkraft und Effektivtemperatur werden verknüpft
- Muster zu erkennen → Charakterisierung der Sterne möglich
- Alter und Masse bestimmen Position im HRD
- Masse–Leuchtkraft Beziehung : $L \propto M^{\nu}$, $3 < \nu < 5$ (Gilt für HR–Sterne)
- Geburtsstunde des Sterns:

 Erreichen der Hauptreihe Friedrich-Alexander-Universität
 Erhangen-Härnberg

Entwicklung auf der Hauptreihe

Wie lange bleiben Sterne auf der Hauptreihe?

- Sterne verbringen 90% ihres Lebens auf der Hauptreihe
- Lebensdauer durch Geburtsmasse bestimmt,denn

$$L \propto M^{
u}$$
 vorh. Brennmat. $\propto M$ $au_{MS} \propto rac{M}{L} = M^{1-
u}$

u>1 ightarrow aus größere Masse folgt kleinere Lebensdauer auf der Hauptreihe

Zeit (a)	
$6 \cdot 10^{12}$	
$7 \cdot 10^{10}$	
$1\cdot 10^{10}$	
$4 \cdot 10^9$	
$2 \cdot 10^{9}$	
$2 \cdot 10^{8}$	
$2 \cdot 10^{7}$	
$6 \cdot 10^{6}$	

Lebensdauer auf der Hauptreihe in Abh. der Masse, *Quelle: Prialnik,* stellar structure and evolution

Endphasen der Sternentwicklung - Sterne bis $8M_{\odot}$

Was passiert nach dem Wasserstoffbrennen?

- ullet Wasserstoffvorrat wird weniger o Stern kühlt ab, wird größer und heller
- Heliumkern wächst an, während Wasserstoffbrennen in Schale fortgesetzt wird
- Bei Erreichen der Schönberg-Chandrasekhar Grenze kontrahiert der Heliumkern
- \to $\it T$ im Inneren erhöht sich und die Energieprod. durch den CNO–Zyklus steigt stark an \to Leuchtkraft steigt sprungartig an
- ightarrow Gleichzeitig expandiert die Hülle und kühlt sich ab
 - → **RGB** (Red Giant Branch)

Endphasen der Sternentwicklung - Sterne bis 8M_☉

Heliumflash¹

- $M < 2M_{\odot}$ Der Kern kontrahiert weiter, durch starke Neutrinoemission wird allerdings nicht die nötige Temperatur erreicht, um das Heliumbrennen zu zünden
- $M > 2M_{\odot}$ Heliumbrennen zündet (kein He–flash)
 - ightarrow Heliumgas degeniert, ermöglicht so das Erreichen noch höherer Temperaturen
 - Schließlich zündet das Heliumbrennen im degenerierten Gas
 - ightarrow **He–flash** (thermonuclear runaway bei ca. $0.5M_{\odot}$, freiwerdende Energie/s: $\sim 10^{11}L_{\odot}!!$)
 - ullet Degeneration wird bei genügend hohem T aufgehoben o Kern expandiert, Hülle kontrahiert
 - Bei Sternen unter $0.5M_{\odot}$ setzt kein He-Brennen ein \rightarrow weißer Zwerg

Endphasen der Sternentwicklung - Sterne bis $8M_{\odot}$

Horizontalast und AGB

- Durch ineffektives He-Brennen kühlt Stern ab
- → Kontraktion der Hülle , Leuchtkraft nimmt stark ab
 - Bis zum Erliegen des He-Brennens verbleibt der Stern auf dem HB (Horizontal Branch)
 - Helium beginnt in einer Schale um den C-Kern zu brennen
- → Der Kern kontrahiert wieder und die Hülle expandiert
 - → **AGB** (Asymptotic Giant Branch)

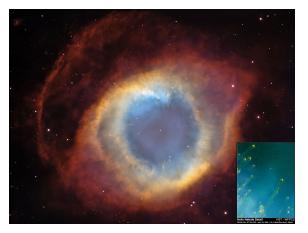
Endphasen der Sternentwicklung - Sterne bis 8M

Planetarische Nebel

- 3 Schichten : C-Kern, He-Brennen, H-Brennen
- H-Brennen zu He und He-Brennen zu C kommen nicht ins GG
- ightarrow Instabilitäten (durch Degeneration) führen zu periodischer Leuchkraftänderung (au=100a-1000a) und starkem Massenverlust
 - 2 Möglichkeiten:
 - "Normaler" Sternenwind; dieser würde dazu führen, dass es viel mehr AGB Sterne geben müsste als es eigentlich gibt
 - Superwind, der zu planetarischen Nebeln führt (kommt aber größtenteils durch andere Effekte zustande)

Endphasen der Sternentwicklung - Sterne bis 8M_☉

Planetarische Nebel


- Im Kern können derweil massereichere Elemente entstehen (auch s-Prozess möglich)
- \bullet Durch Superwind (thermische Pulse) können bis zu 50% der Hülle abgestoßen werden \to Planetarischer Nebel
- Ab 30000K Effektivtemperatur kann der eingeschlossene Stern den Nebel ionisieren → Strukturen beobachtbar
- Behalten die Sterne nach Ende der Kernfusion weniger als $1.44 M_{\odot}
 ightarrow$ weißer Zwerg

Endphasen der Sternentwicklung - Sterne bis $8M_{\odot}$

Planetarische Nebel

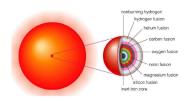
Helix Nebel, Quelle: Prialnik, stellar structure and evolution

Entwicklung der Sterne anhand des Hertzsprung-Russell Diagramms

Endphasen der Sternentwicklung - Sterne bis $8M_{\odot}$

Animation

Endphasen der Sternentwicklung - Sterne ab 8M_☉


Was unterscheidet die massereichen Sterne?

- Durch die große Masse treten keine Entartungen der Gase auf
- → kein He-flash, kein Superwind
 - Durch hohen Strahlungsdruck verlieren Sterne über $30 M_{\odot}$ dennoch so viel Masse, dass sie auf $30 M_{\odot}$ zurückfallen
 - Es folgen weitere Brennvorgänge:
 - Nach He–Brennen setzt Kohlenstoffbrennen ein ($au \sim 100$ a, da sehr ineffektiv, aber viel Energie zur Stabilisierung notwendig)
 - 2 Neonbrennen ($au \sim 1$ a)
 - **3** Sauerstoffbrennen ($\tau \sim$ Monate)
 - **③** Siliziumbrennen ($\tau \sim \mathsf{Tage}$)
 - Durch Photodisintegration werden Elemente bis Fe erzeugt
 - s- und r-Prozess setzen ein (r-Prozess wahrscheinlich beima-Auszader-Universität Kollaps)

Endphasen der Sternentwicklung - Sterne ab 8M_{\top}

Ende der Kernfusion

Zwiebelschalenmodell

- Zwiebelschalenmodell als Ende der Kernfusion
- Kontraktion der Eisenkerns beginnt (→ Degeneration)
- Wird die Chandrasekharmasse für Eisen überwunden, ist die Stabilität nicht mehr gewährleistet
- → Kollaps! (siehe Vortrag "Supernovae")

Entwicklung der Sterne anhand des Hertzsprung-Russell Diagramms

Endphasen der Sternentwicklung - Sterne ab $8M_{\odot}$

Animation

Quellen:

- D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, Cambridge University Press 2000
- A. Unsöld/B. Baschek, Der neue Kosmos, Springer Verlag 1999
- R. Kippenhahn/ A. Weigert, Stellar Strucure and Evolution, Springer Verlag 1994
- HRD Animation: http://www.astro.uni-bonn.de/ javahrd/

