Kosmische Strahlung

Oskar Schneider

Scheinseminar Astro- und Teilchenphysik SS 2010 Friedrich-Alexander Universität Erlangen-Nürnberg

8. Juli 2010

- Historisches
- Messverfahren

2 Eigenschaften

- Chemische Zusammensetzung
- Ausbreitung im ISM
- Spektrum

3 Spektrum und mögliche Beschleuniger

- Das Knie
- Knie bis Knöchel
- Knöchel und UHECR

Quellen

Entdeckung

• Ionisierende Strahlung an Erdoberfläche schon länger bekannt Aber: Wird radioaktiver Strahlung zugeordnet

 1912: Österreicher Viktor Franz Hess Ballonmessungen bis 5 km Höhe Ergebnis: Strahlung nimmt mit Höhe zu ⇒ Strahlung kommt aus Weltall
 ⇒Begriff Kosmische Strahlung Nobelpreis 1936

Abbildung: Hess im Ballon [1]

- 1927:Dimitry Skobelzyn kann erstmals Sekundärteilchen der KS in Nebelkammer Fotographieren
- 1938: Pierre Auger misst bei Koinzidenzmessungen in den Alpen zwei zusammengehörende Ereignisse in voneinander entfernten Detektoren. Er schließt daraus die Existenz ausgedehnter Luftschauer.
- 1932-47: Entdeckung vieler Elementarteilchen in Nebelkammern und Fotoemulsionen durch KS (Positronen, Myonen, Pionen, Kaonen)
 ⇒ Motivation zum Paschleunizerbau
 - \Rightarrow Motivation zum Beschleunigerbau

...bis Heute

Bis Heute wurden Energien von $10^8 - 10^{21}$ eV detektiert und recht lange an der KS geforscht.Dennoch:

Unterschiedliche Flüsse

Abnahme des Flusses	
$> 1 { m ~GeV}$	$\frac{1000}{sm^2}$
>1 PeV	$\frac{1}{yrm^2}$
>100 EeV	$< \frac{1}{10 yrkm^2}$
- Unterschiedliche Messwerfehren	
\Rightarrow oncerschiedliche Messverlahren	
 Direkte Verfahren 	

Indirekte Verfahren

Bis circa 100 TeV sind direkte Untersuchungen der KS möglich.

Direkte Messungen

Ballon- und Satellitenexperimente

- Ionisationsdetektoren
- Magnetspektrometer (Impulsmessung)
- Szintillatoren
- Kalorimeter
- ...

Indirekte Messverfahren

Über 100 TeV werden große Flächen benötigt um Teilchen Nachzuweisen. Rückschlüsse auf Eigenschaften aus Luftschauerexperimenten.

Luftschauer

- KS-Teilchen reagiert in Atmosphäre
- Sekundärprodukte erzeugen Kaskaden von Zerfällen
- \Rightarrow Ausgedehnte Luftschauer

Messverfahren

o ...

- Floureszensteleskope
- Wasser-Cherenkov-Tanks

Abbildung: Luftschauer [3]

Beispiele für Experimente

Direkte Experimente

- Ballonexperimente
 - Japanese-American Cooperative Emulsion Experiment (JACEE)
- Satelliten
 - Alpha Magnetic Spectrometer (AMS01, AMS02)

Indirekte Experimente

- Pierre-Auger-Observatory
- HiRes
- KArlsruhe Shower Core and Array DEtector (KASCADE)
- Fly's Eye

Chemische Zusammensetzung

Chemische Zusammensetztung

Geladene Kosmische Strahlung im Bereich 1-100 TeV

- ca 98 % Atomkerne
 - ca 87 % H-Kerne bzw. Protonen
 - ca 12 % α -Kerne
 - ca 1 % schwerere Kerne (alle Elemente des Periodensystems nachgewiesen)
- ca 2 % Elektronen
- geringer Anteil Antiprotonen, Positronen

Zusätzlich

- Photonen
- hochenergetische Neutrinos

Elemente in KS und Sonnensystem

Abbildung: Relative Häufigkeit der Elemente bis ca. 100 TeV [2]

Übereinstimmungen

C, N, O

 \Rightarrow Elementsynthese in Sternen

Unterschiede

Li, Be, B:

- Schwache Bindungsenergie
- Zwischenprodukt in Sternen
 ⇒ Sekundärreaktionen von C,
 N, O der KS im interstellaren
 Gas

Elemente in KS und Sonnensystem

Abbildung: Relative Häufigkeit der Elemente bis ca. 100 TeV [2]

Unterschiede

- Sc, Ti, V, Mn: Spallationsprodukte von Fe und Ni
- H, He:

schwerer zu ionisieren

 \Rightarrow seltener beschleunigt

Bei höheren Energien ändert sich die Zusammensetzung.

Ausbreitung

Ausbreitung

Wegstrecke

 Verhältnis der Isotopen (z.B. <u>B</u>, ¹⁰<u>Be</u>), erlaubt Abschätzung der mittleren Verweildauer.

 $\Rightarrow \overline{ au} pprox 10^7$ Jahre

• Zusätzlich relativistische Geschwindigkeiten nahe c

 $\Rightarrow \mathsf{Wegstrecke} \gg \mathsf{Durchmesser} \; \mathsf{Galaxie}$

Folgerung

KS-Teilchen bewegen sich auf ungeordneten Bahnen, durch galaktische Magnetfelder abgelenkt.

Galaktisches Magnetfeld

Eigenschaften

- Feldstärke: $B \approx 3\mu G$
- Feldverteilung:
 - nicht homogen
 - zeichnet Struktur der Spiralarme nach

Gyroradius

Bahnradius eines geladenen Teilchens im Magnetfeld (senkrechte Komponente)

$$p = \frac{pc}{ZeB}$$

mit *p* Teilchenimpuls, *Ze* Teilchenladung

Vorsicht: Nur äußerst grobe Abschätzung.

Galaktisches Magnetfeld

Auswirkungen

• GM fängt und akkumuliert KS (ca 10⁷ Jahre)

• GM isotropiert Richtungsverteilung

 \Rightarrow Quellen nicht aus Richtung bestimmbar

Dennoch lässt sich für höchstenergetische Teilchen eine Aussage machen. Proton mit $E = 10^{20}$ eV und $B_{GM} = 3\mu G$

$$\Rightarrow
ho = rac{
ho c}{ZeB} pprox 11 {
m Tpc} \left(r_{MS} pprox 15 {
m kpc}
ight)$$

Folgerung

 \Rightarrow Höhere Energien weisen auf extragalaktische Quellen hin.

Spektrum

Energiespektrum

Abbildung: Energiepektrum [4]

 $\Rightarrow \mathsf{andere} \ \mathsf{Darstellung}$

Abbildung: Mit $E^{2,5}$ multipliziertes Spektrum [1]

Markante Bereiche

• Knie:
$$\frac{dN}{dE} \propto E^{\gamma}$$
, $\gamma \begin{cases} -2,7 & \text{wenn } E < 4 \cdot 10^{15} \text{ eV} \\ -3,1 & \text{wenn } 4 \cdot 10^{15} < E < 5 \cdot 10^{18} \text{ eV} \end{cases}$
• Knöchel ab ca 100 EeV erneute Abflachung

Stochastische Beschleunigung

Power-Law erklärbar durch stochastische Beschleunigung.

Annahmen	
• $E = \xi E_0$, Energie nach Beschleunigung	
• P, Wahrscheinlichkeit in Beschleunigerregion zu bleiben	
Nach k Beschleunigungen	
• $N = N_0 P^k$ $\rightarrow \ln(N/N_0) - \ln(P) = N - (E)^{\frac{\ln P}{\ln \xi}}$	
• $E = E_0 \xi^k$ $\rightarrow \overline{\ln(E/E_0)} - \overline{\ln(\xi)}, \ \overline{N_0} - (\overline{E_0})$	
\Rightarrow Power-Law	

$$\frac{\mathrm{d}N}{\mathrm{d}E} = const. \cdot E^{-1 + \frac{\ln P}{\ln \xi}} \propto E^{\gamma}$$

Das Knie

Beschleunigung in Supernovae?

Abbildung: Cassiopaia A [11]

Spektrum und mögliche Beschleuniger Das Knie

Bringen SNs die nötige Beschleunigungsleistung?

Kosmische Strahlung

- KS-Energiedichte: $\rho_F^{KS} \approx 0.5 \frac{\text{MeV}}{\text{m}^2}$
- Verweildauer: $\tau_G^{KS} \approx 10^7$ a
- Volumen Galaxis: $V_G \approx 10^{61} \text{m}^3$

$$\Rightarrow L_{KS} = \frac{V_G \cdot \rho_E^{KS}}{\tau_G^{KS}} \approx 3 \cdot 10^{33} \frac{\mathsf{J}}{\mathsf{s}}$$

Supernovae

- Zeit zw. SN-Explosionen: $\tau_C^{SN} \approx 30 50$ a
- Energie pro SN-Explosion: $E^{SN} \approx 3 \cdot 10^{46}$ J

$$\Rightarrow L_{SN} = \frac{E^{SN}}{\tau_G^{SN}} \approx 3 \cdot 10^{35} \frac{\text{J}}{\text{s}}$$

 \Rightarrow Effizienz von 1 – 10% Beschleunigung würde reichen.

Spektrum und mögliche Beschleuniger Das Knie

Beschleunigung in SNe Schockfronten I

Die Beschleunigung wird in den Schockwellen der SN-Explosionen angenommen. Ein gutes Modell bietet die Fermi-Beschleunigung 1. Ordnung.

Relativistische Rechnungen ergeben:

Mittlere Energie

$$\langle E_2 \rangle = E_1(1 + \beta + O(\beta^2))$$

wobei
$$\beta = \frac{u}{c}$$

Abbildung: Skizze Fermibeschleunigung 1.Ordnung [2] Spektrum und mögliche Beschleuniger Das Knie

Beschleunigung in SNe Schockfronten II

Vor und nach der Front bildet sich Plasma mit turbulenten Magnetfeldern aus.

 \Rightarrow Mehrfache Beschleunigung möglich.

Abbildung: Veranschaulichung Schockwellenbeschleunigung [5]

Legende

- Schockfront
- Plasma mit Magnetfeld
- Teilchenbahn

Spektrum und mögliche Beschleuniger

Das Knie

Beschleunigung in SNe Schockfronten III

Maximale Energie

Lebenszeit einer Schockfront:

 $\tau \approx 10^5$ a

$$\Rightarrow E_{max} pprox Z \cdot (0.1 - 5) PeV$$

\Rightarrow Z-Abhängiges Abknicken der Elemente

Verschiedene Modelle berücksichtigen unterschiedliche

- Magnetfeldstärken der SNe
- Verfügbare Energien
- Umgebendes Medium

Beschleunigung in SNe Schockfront IV

Vergleich mit Power-Law

Numerische Abschätzungen ergeben für Supernovae-Schockfronten

$$\frac{\mathrm{d}N}{\mathrm{d}E} = const. \cdot E^{-1 + \frac{\ln P}{\ln \xi}} \propto E^{\gamma}$$

$$\gamma = 2, 0 \cdots 2, 2$$

Mit Berücksichtigung von Energieverlustprozessen im ISM ist das mit dem realen Wert von $\gamma = 2,7$ im Spektrum vereinbar.

γ -Spektrum SNe I

Abbildung: Power-Law im γ -Bereich [8]

γ -Spektrum SNe II

Power-Law im γ -Spektrum

Auch im γ -ray Spektrum konnte ein Power-Law erkannt werden mit Index:

 $\gamma_{\gamma} = 2, 13 \pm 0, 03$

Ubereinstimmung mit Schockwellen-Modellen.

(Wechselwirkung beschleunigter Protonen mit umgebendem Medium) Gamma-Quanten solcher Energien können nur von geladenen Teilchen mit noch höheren Energien erzeugt werden.

 \Rightarrow Supernovae können bis über 100 TeV beschleunigen.

 \Rightarrow SNe können Spektrum bis zum Knie gut erklären. Es gibt jedoch noch weitere Erklärungsverssuche für das Knie.

Einzelne nahe Quelle?

Einzelne nahe SN

Spektrum kommt Zustande durch

- Naher SNR
- Untergrund

Auch hier wäre ein Z-abhängiges Abknicken zu beobachten.

Abbildung: Nahe Quelle + Undergrund [12]

Entweichen aus der Galaxie I

Erinnerung: Gyroradius

$$o = \frac{pc}{ZeB}$$

 \Rightarrow Teilchen können ab gewisser Energie Galaxis verlassen. Dies wäre auch Z-Abhängig.

Entweichen aus der Galaxie II

10 Km

Abbildung: Simulation: 10¹⁸eV, isotrop injiziert bei 4kpc [12]

Abbildung: Z-Abhängigkeit Gyroradius [2]

Das Knie

Problem bei Luftschaueranalyse?

Unbekannte Komponente bei Luftschauern

Bekannte Komponenten:

- Elektromagnetische Komponente
- Myonische Komponente
- Hadronische Komponente

Vielleicht gibt es ab bestimmter Energie eine weitere unbekannte Komponente. Dies würde ein A-, also ein Masseabhängiges Abknicken zur Folge haben.

Spektrum und mögliche Beschleuniger Das Knie

Unterschied Z- oder A-Abhängiges abknicken

Abbildung: Schematische Darstellung [12]

Bilderklärung

- Links: Z-Abhängig (*E_{max}* SNe, bzw. diffundieren aus Galaxis)
- Rechts: A-Abhängig (Unbekannte Luftschauerkomponente)

Oskar Schneider (Scheinseminar Astro- und T

Kosmische Strahlung

08.07.2010 37 / 56

Das Knie

Messungen

Abbildung: Messergebnisse Kascade [6]

Ergebnis

A- und Z- Abhängigkeit nicht unterscheidbar. Jedoch ist offensichtlich, dass leichtere Komponenten zuerst abknicken.

Oskar Schneider (Scheinseminar Astro- und T

Kosmische Strahlung

08.07.2010 38 / 56

Das Knie

Zusammenfassung Knie

Beobachtung

- Verlust leichter Elemente (Z-oder A-Abhängig)
- Korrelation von KS-Spektrum und Schockfrontenmodellen von SNR
- Korrelation mit γ-ray-Spektren von SNR und Schockfrontenmodellen

\Rightarrow Kombination von:

- E_{max} SNR ($E_{max} \approx Z \cdot (0.1 5)$ PeV)
- Diffundieren aus der Galaxis

Knie bis Knöchel

Übergang zu extragalaktischen Quellen

- Erinnerung: Ab gewisser Energie ist Gyroradius zu groß um Teilchen in Galaxis zu binden.
- Trotzdem werden Teilchen mit höheren Energien detektiert

 \Rightarrow Irgendwo im Bereich $10^{16}-10^{18} \text{eV}$ kommen extragalaktische Quellen hinzu.

Doch was sind mögliche Quellen?

Hillas Diagramm

Eine vereinfachte und grobe Abschätzung möglicher Quellen bietet das Hillas-Diagramm.

Abbildung: [7]

Beschleuniger

Beschleunigungsmechanismen

- Akkretion bzw. Plasmabewegung \Rightarrow Magnetfelder
- Schockwellen- und EM-Beschleunigung in Jets

Kandidaten

- Pulsare (bis $\approx 10^{19} {\rm eV}$)
- AGN (bis $\approx 10^{21} \text{eV})$
- Doppelsternsysteme (bis $\approx 3 \cdot 10^{19}$ eV)
- Mikroquasare
- GRBs
- o . . .

Wenig Statistik und Isotropisierung macht das Identifizieren schwer

Komposition der extragalaktischen KS

Weitere Anhaltspunkte?

Wie im Hillas-Diagramm erkennbar ist, kommt es auch auf die Kernladungszahl, also die Komposition der extragalaktischen KS an. Dadurch lässt sich auf

- den Übergangsbereich von gal. zu extragal. KS
- mögliche Quellen

schließen.

Komposition bei hohen Energien

Abbildung: Komposition bei höheren Energien[10]

 $\langle X_{max} \rangle$

Mittlere atmosphärische Tiefe, in der EM-Kaskade das Maximum erreicht:

$$\langle X_{max}
angle = lpha (\ln E - \langle \ln A
angle + eta)$$

Ergebnisse

schwer \rightarrow leicht \rightarrow schwer?

 \Rightarrow Höhere Statistik und bessere Modelle von nöten.

Knöchel und UHECR (Ultra-High-Energie-Cosmic-Rays)

$E>10^{20}$ eV

Ab 1993 misst AGASA mehrere Events mit $E > 10^{20}$ eV, so genannte "oh my god"-Teilchen.

Abbildung: AGASA Messungen [9]

GZK-Cutoff

Problem

Greisen-Zatsepin-Kusmin-Cutoff

• Ab Schwerpunktsenergie $E_{GZK} = 1,073$ GeV können Kerne und Protonen mit Photonen der CMB wechselwirken.

$$p + \gamma
ightarrow \Delta^+(1232)
ightarrow {p + \pi^0 \over n + \pi^+}$$

- Energieverlust: p verliert im Mittel 20% Energie
- Mittlere freie Weglänge 30 − 50 Mpc
 ⇒ Galaxienahe Quellen.
- Aber:Keine Quellen in näherer Umgebung der MS bekannt, die so hohe Energien beschleunigen kann.

GZK-Cutoff

Abbildung: GZK-Effekt mehrfach möglich. Irgendwann landen alle Protonen bei c
a $5\cdot 10^{19} \text{eV}.$ [7]

Erklärungsversuch

Zerfall superschwerer Teilchen (Top-Down Modell)

- Superschwere X-Teilchen aus Inflation
- Sammeln sich im Halo der MS an
- Spontaner Zerfall

Probleme:

- Höhere Anisotropie vom Galaxiezentrum als gemessen
- Neue Teilchenphysik
- Evidenzen für solche Teilchen wurden nie gefunden

Spektrum und mögliche Beschleuniger Knöchel und UHECR

Messung Pierre-Auger-Observatory, HiRes

GZK-Cutoff doch Nachgewiesen \Rightarrow AGASA hat wohl falsch gemessen.

Abbildung: Energiespektrum mit AGASA [10]

Ursprung höchster Energien

Bei den höchsten Energien wird die Strahlung nicht mehr so stark durch das galaktsiche Magnetfeld Isotropiert (Gyroradius wird sehr groß). ⇒Anisotropien können auf mögliche Quellen hinweisen

Legende

- Sterne:AGN
- Kreise:
 - ${\sf Hochenergie}\ {\sf KS}$
- Bänder: Blickfeld

Abbildung: AGN und UHECR; Messung Auger [7]

Zusammenfassung und Ausblick

Zusammenfassung

- LHC: Bessere Interpretation der Luftschauerdaten.
- Höhere Statistik der Komposition und der höchsten Energien (Auger etc.)
- Messungen Neutrinos, Photonen:

Besseres Verstehen des hochenergetischen Bereichs, Quellen und Beschleunigungsmechanismen.

?FRAGEN?

- [1] www.astroteilchenphysik.de
- [2] Skript zur Vorlesung Astroteilchenphysik, Hermann Kolanoski, Humboldt-Universität zu Berlin
- [3] http://www.astro.ru.nl
- [4] www.weltderphysik.de
- [5] http://www.ecap.physik.unierlangen.de/ katz/ws05/atp/talks/sr/SR.pdf
- [6] H. Ulrich: INDIRECT MEASUREMENTS AROUND THE KNEE-RECENT RESULTS FROM KASCADE
- [7] www.auger.de
- 8]

http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2005/01/

- [9] http://www-akeno.icrr.u-tokyo.ac.jp/AGASA
- [10] M. Unger, Cosmic Rays above the Knee

Quellen

- [11] www.wikipedia.de
- [12] http://particle.astro.kun.nl/hs0607/A-Vogel.pdf
- [13] T. Yamamoto, The UHECR spectrum measured at the Pierre Auger Observatory and its astrophysical implications
- [14] J. Blümer, R. Engel, J. Hörandel, Cosmic Rays from the Knee to the Highest Energies
- [15] T.K. Gaisser, Cosmic Rays at the Knee