

Blazare Historisch Aktive Galaxien Blazare Ergebnisse

Felicia Krauß

Seminar zur Astro- und Teilchenphysik, 20. Juni 2011

Entdeckung

1908 E. A. Fath: NGC 1068 Emissionslinien wie planetarischer Nebel sehr breite Emissionslinien

Garcia-Lorenzo, Mediavilla & Arribas, 1999 Blazare

Entdeckung

M87 Jet (HST)

1918: Heber D. Curtis: Entdeckung optischer Jet (M87)

1926: E. Hubble: Emissionslinien in mehreren Objekten stark rotverschoben \rightarrow extragalaktische Quellen

1929: **BL Lac** Sternwarte Sonneberg, veränderlicher Stern

Entdeckung

1943 C. Seyfert: Spiralgalaxien mit Emissionslinien \rightarrow Seyfert-Galaxien

1950-1960: Radio Surveys: viele unbekannte Quellen

 \rightarrow **Quasar** (quasi-stellar radio source)

1963 M. Schmidt: 3C273 bei $z=0.158 \rightarrow d \approx 680$ Mpc

Quasar (NAOJ)

Entdeckung

1943 C. Seyfert: Spiralgalaxien mit Emissionslinien \rightarrow Seyfert-Galaxien

1950-1960: Radio Surveys: viele unbekannte Quellen

 \rightarrow **Quasar** (quasi-stellar radio source)

1963 M. Schmidt: 3C273 bei $z=0.158 \rightarrow d \approx 680$ Mpc

Quasar (NAOJ)

Aktive Galaxien

Klassifizierung

- Hohe Leuchtkraft $(10^{11} 10^{14} L_{\odot})$
- Emission aus kleinem Gebiet im Zentrum
- Kontinuumsemissionen im gesamtem Spektrum
- breite Emissionslinien im optischen und UV
- Aktiver Kern: Supermassives Schwarzes Loch (SMBH) (pprox 10⁸ M_{\odot})

Aktive Galaxien

Standard Modell

AGN - Modell (Urry & Padovani 1995)

AGN - Modell (NASA/CXC/M.Weiss)

SED (Spectral Energy Distribution)

Ian Robinson, Active Galactic Nuclei, 1996

$$F = \int_{\nu_1}^{\nu_2} f \, d\nu = \int_{ln(\nu_1)}^{ln(\nu_2)} \nu \cdot f \, d(ln\nu)$$

f: spektrale Energiedichte $\left(\frac{J}{s \ m^2 \ Hz}\right)$

Blazare 9/33

SED (Spectral Energy Distribution)

 $F_{\nu} = C \cdot \nu^{-\alpha}$

mit lpha pprox 1 $u F_{
u}$ konstant: nicht thermische Emission

Blazar Sequenz

gemitteltes Blazar Spektrum, (Donato et al. 2001)

SED (Spectral Energy Distribution)

gemitteltes Blazar Spektrum, (Donato et al. 2001)

typisches Spektum eines Blazars \rightarrow zwei Peaks

ightarrow simultane Beobachtungen in verschiedenen Wellenlängen notwendig

e — 12 / 33

Multiwellenlängen-Astronomie

SED, (Ian Robson, Active Galactic Nuclei, 1996.)

Multiwellenlängenbeobachtungen

- Radio: Effelsberg, VLBI, VLA,...
- IR: IRAS, Herschel
- UV/Optisch: zB. Swift/XMM
- X -ray: Chandra, Swift, XMM-Newton, Suzaku, RXTE
- Gamma: Hess, Fermi, Agile

Multiwellenlängen-Astronomie

Probleme

- Variabilität der Blazare
 - \rightarrow zeitnahe Beobachtungen notwendig
- erdgebundene Beobachtungen: nur nachts
- Satelliten: 90° zur Sonne

Multiwellenlängen-Astronomie

Table 1: Simultaneous TANAMI-Swift/XRT observations of selected BL Lacs					
Sourcename	Frequency	TANAMI epoch	Swift/XRT epoch	XRT ontime	Obs-ID
PKS 0208-512	8 GHz	Nov 2007			
	8 GHz	June 2008			
PKS 0208-512	8 GHz	Nov 27, 2008	2008-11-25T10:17:01 2008-11-25T12:15:58	2172.342000	00035002021
	8 GHz	Sept 5, 2009	2009-09-10T02:38:01 2009-09-10T03:46:40	1203.088000	00035002033
	8 GHz	March 2010			
	8 GHz	July 2010			
	8 GHz	March 2011			
	$22 \mathrm{GHz}$	Nov 29, 2008	2008-11-25T10:17:01 2008-11-25T12:15:58	2172.342000	00035002021
	22 GHz	July 2009			
	22 GHz	March 2011			
PKS 0521-36	8 GHz	Nov 2007			
	8 GHz	March 2008			
	8 GHz	Aug 2008			
	8 GHz	Feb 2009			
PKS 0521-36	8 GHz	March 2010	2010-03-05T04:53:00 2010-03-05T06:08:20	1702.464000	00031645001
			2010-03-08T00:13:01 2010-03-08T23:40:51	2432.838000	00031645002
	8 GHz	July 2010	2010-07-09/T00:36:01 2010-07-09/T04:48:22	2954.999000	00031645006
			2010-07-13T07:22:01 2010-07-13T11:55:05	2883.432000	00031645007
	8 GHz	March 2011	2011-03-06T15:30:01 2011-03-06T17:13:00	1168.041000	00031645008
			2011-03-07T04:25:01 2011-03-07T06:39:31	2043.446000	00031645009
	$22 \mathrm{GHz}$	March 2008			
	22 GHz	Aug 2008			
	22 GHz	March 2011	2011-03-06T15:30:01 2011-03-06T17:13:00	1168.041000	00031645008
			2011-03-07T04:25:01 2011-03-07T06:39:31	2043.446000	00031645009
PKS 2005-489	8 GHz	Nov 2007			
	8 GHz	March 2008			
	8 GHz	Aug 2008			
PKS 2005-489	8 GHz	Feb 2009	2009-06-01T00:58:00 2009-06-01T06:43:32	2954.381000	00035026007
	8 GHz	Dec 2009	2009-06-24T20:42:00 2009-06-24T23:30:03	3251.680000	00035026009
	8 GHz	July 2010			
	8 GHz	March 2011	1 -		
	$22 \mathrm{GHz}$	March 2008			
	$22\mathrm{GHz}$	Aug 2008			
	$22\mathrm{GHz}$	March 2011			
PKS 2155-305	8 GHz	March 2008	-		
PKS 2155-305	8 GHz	Aug 8, 2008	2008-08-08T23:58:01 2008-08-09T01:04:42	832.207000	00030795034
	8 CHz	Eeb 2009			

C. Müller

TANAMI

Blazare 16 / 33

TANAMI

(NASA/Fermi LAT/TANAMI)

- Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry
- VLBI Monitoring (Very Large Baseline Interferometry)
- 8.4 and 22 GHz

TANAMI

SED (Roopesh Ojha, Tanami)

MOJAVE

(http://www.physics.purdue.edu/)

VLBA Beobachtungen 15 GHz

SED (Spectral Energy Distribution)

gemitteltes Blazar Spektrum, (Donato et al. 2001)

Ursache für die beiden Peaks?

SED (Spectral Energy Distribution)

Der erste Höcker: Synchrotron-Strahlung

entsteht wenn geladene Teilchen in einem Magnetfeld beschleunigt werden

(http://woodahl.physics.iupui.edu/)

- Synchrotronstrahlung ist linear polarisiert
- bei relativistischen Geschwindigkeiten → stark kollimierter Strahlungskegel
- Änderung der Jet Geschwindigkeit
 → Flussänderungen erklären Variabilität

21 / 33

Synchrotron-Strahlung

(SED 3C273, (Türler et al., 1999))

Überlagerung der Synchrotronstrahlung: Potenzgesetz

Blazare 22 / 33

Synchrotron-Strahlung

Bei kleinen Energien: Elektronen absorbieren Synchrotron-Photonen

\rightarrow Synchrotron Selbst - Absorption

SED (Spectral Energy Distribution)

Der zweite Höcker? Verschiedene Modelle → genauere Betrachtung notwendig

Leptonisches vs. hadronisches Modell

Leptonisches Modell

relativistisches Jetplasma aus Elektronen und Positronen zweiter Höcker durch Inverser Compton Effekt

(NASA)

Inverser Compton Effekt

$$\gamma + e^- \rightarrow \gamma + e^-$$

Inverser Compton Effekt: hochenergetisches Elektron streut an niederenergetischem Photon

Intern: Photonen entstehen im Jet (Synchrotron-Self-Compton) Extern: Photonen kommen von außen

Inverser Compton Effekt

$$E_{RS} = E_{LS} \cdot \gamma \cdot (1 - \beta \cos\theta)$$

 $E'_{LS} = E'_{RS} \gamma (1 + \beta \cos\theta')$
 $\rightarrow E' = E \cdot \gamma^2$

da $\theta \approx \frac{\pi}{2}$

gemitteltes Blazar Spektrum, (Donato et al. 2001)

Leptonisches Modell

SED: PKS 0521-365 (Roopesh Ojha/Tanami)

Leptonisches Modell

Zusammenfassung

- Elektronen haben wenig Masse \rightarrow Beschleunigung leichter
- gute Übereinstimmung beim Synchrotronhöcker
- SSC gute Erklärung für zweiten Höcker
- Problem: Ladungsneutralität (Elektronen und Positronen im Jet vorhanden)

Blazare

29 / 33

Hadronisches Modell

Hochrelativistische Protonen im Jetplasma

Erster Höcker: ebenfalls durch Synchrotronstrahlung Zweiter Höcker: Proton-Proton und Proton-Photon Wechselwirkungen

Blazare

30 / 33

Beschleunigung: Schockfronten

Hadronisches Modell

Proton-Proton Reaktionen produzieren Mesonen: Zerfall

 $\begin{aligned} \pi^{0} &\to 2\gamma \\ \pi^{\pm} &\to \mu^{\pm} \nu_{\mu} \end{aligned}$

. . .

 \rightarrow Detektion von Neutrinos wären guter Beweis für hadronisches Modell

Blazare

31 / 33

Hadronisches Modell

Zusammenfassung

- gute Übereinstimmung im Ultrahochenergiebereich
- Neutrino-Beobachtungen notwendig

Ergebnisse

Variabilität

Kurzzeitvariabilität: Minuten - Tage, Flares, Interstellare Szintillation, Micro-lensing Langzeitvariabilität: Monate - Jahre, Akkretionssschwankungen

Abdo et al. 2010

Extragalactic Background Light

- gesamte diffuses Licht aller extragalaktischen Quellen
- Beitrag: 1 % des ankommenden Lichtes im UV-IR
- Messungen schwierig, da Quellen im Vordergrund viel stärker leuchten

Extragalactic Background Light

hohen Energien: γ -Strahlung reagiert mit EBL

$$\gamma + \gamma_{\rm EBL} \rightarrow e^+ + e^-$$

 $\rightarrow \mathsf{Aufschluss}\ \mathsf{\ddot{u}ber}\ \mathsf{EBL}$

Ergebnisse

Quellen

Krolik, J.: Active Galactic Nuclei, Princeton 1999

Rybicki G., Lightman A.: Radiative Processes in Astrophysics, Wiley 2004

Longair M.: High Energy Astrophysics, Cambridge 2004

Wilms J., Kadler M.: Vorlesung Aktive Galaxien, SS 10

Wilms J., Kadler M.: Vorlesung Multiwellenlängenastronomie, SS 09

cosmographica.com)