

Blazare Historisch Aktive Galaxien Blazare Ergebnisse

Felicia Krauß

Seminar zur Astro- und Teilchenphysik, 20. Juni 2011

1908 E. A. Fath: NGC 1068 Emissionslinien wie planetarischer Nebel sehr breite Emissionslinien

M87 Jet (HST)

1918: Heber D. Curtis: Entdeckung optischer Jet (M87)

1926: E. Hubble: Emissionslinien in mehreren Objekten stark rotverschoben \rightarrow extragalaktische Quellen

1929: **BL** Lac Sternwarte Sonneberg, veränderlicher Stern

1943 C. Seyfert: Spiralgalaxien mit Emissionslinien

 $\rightarrow \textbf{Seyfert-Galaxien}$

1950-1960: Radio Surveys: viele unbekannte Quellen

ightarrow **Quasar** (quasi-stellar radio source)

1963 M. Schmidt: 3C273 bei z=0.158 \rightarrow d \approx 680 Mpc

Quasar (NAOJ)

1943 C. Seyfert: Spiralgalaxien mit Emissionslinien

 $\rightarrow \textbf{Seyfert-Galaxien}$

1950-1960: Radio Surveys: viele unbekannte Quellen

 \rightarrow **Quasar** (quasi-stellar radio source)

1963 M. Schmidt: 3C273 bei z=0.158 \rightarrow d \approx 680 Mpc

Quasar (NAOJ)

Klassifizierung

- Hohe Leuchtkraft $(10^{11}-10^{14}L_{\odot})$
- Emission aus kleinem Gebiet im Zentrum
- Kontinuumsemissionen im gesamtem Spektrum
- breite Emissionslinien im optischen und UV
- ullet Aktiver Kern: Supermassives Schwarzes Loch (SMBH) ($pprox 10^8 M_{\odot}$)

Klassifizierung

Standard Modell

AGN - Modell (Urry & Padovani 1995)

AGN - Modell (NASA/CXC/M.Weiss)

SED (Spectral Energy Distribution)

$$F = \int_{\nu_1}^{\nu_2} f \ d\nu = \int_{\ln(\nu_1)}^{\ln(\nu_2)} \nu \cdot f \ d(\ln \nu)$$

f: spektrale Energiedichte $\left(\frac{J}{s \ m^2 \ Hz}\right)$

SED (Spectral Energy Distribution)

$$F_{\nu} = C \cdot \nu^{-\alpha}$$

mit lpha pprox 1 $u F_{
u}$ konstant: nicht thermische Emission

Blazar Sequenz

gemitteltes Blazar Spektrum, (Donato et al. 2001)

SED (Spectral Energy Distribution)

gemitteltes Blazar Spektrum, (Donato et al. 2001)

typisches Spektum eines Blazars → zwei Peaks

 \rightarrow simultane Beobachtungen in verschiedenen Wellenlängen notwendig

Multiwellenlängen-Astronomie

SED, (Ian Robson, Active Galactic Nuclei, 1996.)

Multiwellenlängenbeobachtungen

- Radio: Effelsberg, VLBI, VLA,...
- IR: IRAS, Herschel
- UV/Optisch: zB. Swift/XMM
- X -ray: Chandra, Swift, XMM-Newton, Suzaku, RXTE
- Gamma: Hess, Fermi, Agile

Multiwellenlängen-Astronomie

Probleme

- Variabilität der Blazare
 - ightarrow zeitnahe Beobachtungen notwendig
- erdgebundene Beobachtungen: nur nachts
- Satelliten: 90° zur Sonne

Multiwellenlängen-Astronomie

	Table 1:	Simultaneous TAN	AMI-Swift/XRT observations of selected BI	Lacs	
Sourcename	Frequency	TANAMI epoch	Swift/XRT epoch	XRT ontime	Obs-ID
PKS 0208-512	8 GHz	Nov 2007	_		
	$8\mathrm{GHz}$	June 2008			
PKS 0208-512	$8\mathrm{GHz}$	Nov 27, 2008	2008-11-25T10:17:01 2008-11-25T12:15:58	2172.342000	00035002021
	$8\mathrm{GHz}$	Sept 5, 2009	2009-09-10T02:38:01 2009-09-10T03:46:40	1203.088000	00035002033
	$8\mathrm{GHz}$	March 2010			
	$8\mathrm{GHz}$	July 2010			
	$8\mathrm{GHz}$	March 2011			
	$22\mathrm{GHz}$	Nov 29, 2008	2008-11-25T10:17:01 2008-11-25T12:15:58	2172.342000	00035002021
	$22\mathrm{GHz}$	July 2009			
	$22\mathrm{GHz}$	March 2011			
PKS 0521-36	8 GHz	Nov 2007	_		
	$8\mathrm{GHz}$	March 2008			
	$8\mathrm{GHz}$	Aug 2008			
	$8\mathrm{GHz}$	Feb 2009			
PKS 0521-36	8 GHz	March 2010	2010-03-05T04:53:00 2010-03-05T06:08:20	1702.464000	00031645001
			2010-03-08T00:13:01 2010-03-08T23:40:51	2432.838000	00031645002
	$8\mathrm{GHz}$	July 2010	2010-07-09T00:36:01 2010-07-09T04:48:22	2954.999000	00031645006
			2010-07-13T07:22:01 2010-07-13T11:55:05	2883.432000	00031645007
	$8\mathrm{GHz}$	March 2011	2011-03-06T15:30:01 2011-03-06T17:13:00	1168.041000	00031645008
			2011-03-07T04:25:01 2011-03-07T06:39:31	2043.446000	00031645009
	$22\mathrm{GHz}$	March 2008			
	$22\mathrm{GHz}$	Aug 2008			
	$22\mathrm{GHz}$	March 2011	2011-03-06T15:30:01 2011-03-06T17:13:00	1168.041000	00031645008
			2011-03-07T04:25:01 2011-03-07T06:39:31	2043.446000	00031645009
PKS 2005-489	$8\mathrm{GHz}$	Nov 2007			
	$8\mathrm{GHz}$	March 2008			
	$8\mathrm{GHz}$	Aug 2008			
PKS 2005-489	$8\mathrm{GHz}$	Feb 2009	2009-06-01T00:58:00 2009-06-01T06:43:32	2954.381000	00035026007
	$8\mathrm{GHz}$	Dec 2009	2009-06-24T20:42:00 2009-06-24T23:30:03	3251.680000	00035026009
	$8\mathrm{GHz}$	July 2010			
	$8\mathrm{GHz}$	March 2011	1 -		
	$22\mathrm{GHz}$	March 2008	-		
	$22\mathrm{GHz}$	Aug 2008			
	$22\mathrm{GHz}$	March 2011	_		
PKS 2155-305	$8\mathrm{GHz}$	March 2008	_		
PKS 2155-305	$8\mathrm{GHz}$	Aug 8, 2008	2008-08-08T23:58:01 2008-08-09T01:04:42	832,207000	00030795034
	8 CHv	Ech 2009			

TANAMI

TANAMI

(NASA/Fermi LAT/TANAMI)

- Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry
- VLBI Monitoring (Very Large Baseline Interferometry)
- 8.4 and 22 GHz

TANAMI

SED (Roopesh Ojha, Tanami)

MOJAVE

(http://www.physics.purdue.edu/)

VLBA Beobachtungen 15 GHz

SED (Spectral Energy Distribution)

gemitteltes Blazar Spektrum, (Donato et al. 2001)

Ursache für die beiden Peaks?

SED (Spectral Energy Distribution)

Der erste Höcker: Synchrotron-Strahlung

 entsteht wenn geladene Teilchen in einem Magnetfeld beschleunigt werden

(http://woodahl.physics.iupui.edu/)

- Synchrotronstrahlung ist linear polarisiert
- bei relativistischen Geschwindigkeiten
 → stark kollimierter Strahlungskegel
- Änderung der Jet
 Geschwindigkeit
 → Flussänderungen erklären
 Variabilität

Synchrotron-Strahlung

(SED 3C273, (Türler et al., 1999))

Überlagerung der Synchrotronstrahlung: Potenzgesetz

Synchrotron-Strahlung

Bei kleinen Energien: Elektronen absorbieren Synchrotron-Photonen

→ Synchrotron Selbst - Absorption

SED (Spectral Energy Distribution)

Der zweite Höcker?

Verschiedene Modelle → genauere Betrachtung notwendig

Leptonisches vs. hadronisches Modell

Leptonisches Modell

relativistisches Jetplasma aus Elektronen und Positronen zweiter Höcker durch Inverser Compton Effekt

(NASA)

Inverser Compton Effekt

$$\gamma + e^- \rightarrow \gamma + e^-$$

Inverser Compton Effekt: hochenergetisches Elektron streut an niederenergetischem Photon

Intern: Photonen entstehen im Jet (Synchrotron-Self-Compton)

Extern: Photonen kommen von außen

Inverser Compton Effekt

$$E_{RS}=E_{LS}\cdot\gamma\cdot(1-eta cos heta)$$
 $E'_{LS}=E'_{RS}\;\gamma\;(1+eta cos heta')$ $ightarrow E'=E\cdot\gamma^2$ da $hetapprox rac{\pi}{2}$

gemitteltes Blazar Spektrum, (Donato et al. 2001)

Leptonisches Modell

SED: PKS 0521-365 (Roopesh Ojha/Tanami)

Leptonisches Modell

Zusammenfassung

- $\bullet \ \ \, \mathsf{Elektronen} \ \, \mathsf{haben} \ \, \mathsf{wenig} \ \, \mathsf{Masse} \, \to \, \mathsf{Beschleunigung} \, \, \mathsf{leichter}$
- gute Übereinstimmung beim Synchrotronhöcker
- SSC gute Erklärung für zweiten Höcker
- Problem: Ladungsneutralität (Elektronen und Positronen im Jet vorhanden)

Hadronisches Modell

Hochrelativistische Protonen im Jetplasma

Erster Höcker: ebenfalls durch Synchrotronstrahlung Zweiter Höcker: Proton-Proton und Proton-Photon

Wechselwirkungen

Beschleunigung: Schockfronten

Hadronisches Modell

Proton-Proton Reaktionen produzieren Mesonen: Zerfall

$$\pi^0 \to 2\gamma$$
$$\pi^{\pm} \to \mu^{\pm} \nu_{\mu}$$

. . .

ightarrow Detektion von Neutrinos wären guter Beweis für hadronisches Modell

Hadronisches Modell

Zusammenfassung

- gute Übereinstimmung im Ultrahochenergiebereich
- Neutrino-Beobachtungen notwendig

Variabilität

Kurzzeitvariabilität: Minuten - Tage, Flares, Interstellare Szintillation, Micro-lensing

Langzeitvariabilität: Monate - Jahre, Akkretionssschwankungen

Abdo et al. 2010

Extragalactic Background Light

- gesamte diffuses Licht aller extragalaktischen Quellen
- Beitrag: 1 % des ankommenden Lichtes im UV-IR
- Messungen schwierig, da Quellen im Vordergrund viel stärker leuchten

Extragalactic Background Light

hohen Energien: γ -Strahlung reagiert mit EBL

$$\gamma + \gamma_{\rm EBL} \rightarrow e^+ + e^-$$

ightarrow Aufschluss über EBL

Quellen

Krolik, J.: Active Galactic Nuclei, Princeton 1999

Rybicki G., Lightman A.: Radiative Processes in Astrophysics, Wiley 2004

Longair M.: High Energy Astrophysics, Cambridge 2004

Wilms J., Kadler M.: Vorlesung Aktive Galaxien, SS 10

Wilms J., Kadler M.: Vorlesung Multiwellenlängenastronomie, SS 09

(cosmographica.com)