
Centaurus A

Steinle (AIP Conf. Proc. 587, 353-357, 2001)

Broad-band spectrum of Cen A: Spectral Energy Distribution (SED)

 νf_{ν} is flat

⇒ similar energy output at all wavebands!

Shown is a νf_{ν} plot, where ν : frequency, f_{ν} : flux density at frequency ν (units of f_{ν} are $\mathrm{J\,s^{-1}\,cm^{-2}\,Hz^{-1}}$). Since

$$\int_{\nu_1}^{\nu_2} \nu f_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} f_{\nu} d\ln \nu$$

 \Longrightarrow plotting νf_{ν} in a log-log plot gives measure of energy emitted per frequency decade

Multiwavelength Astrophysics

3-1

17

Proportional Counters

Introduction

Before we can look at individual radiation processes, we need to understand how the radiation is detected:

Non-imaging detectors

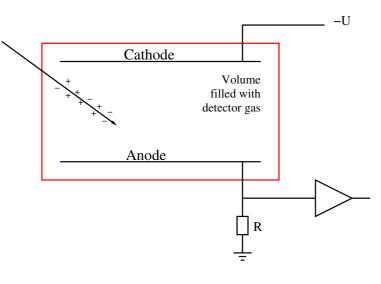
Detectors capable of detecting photons from a source, but without any spatial resolution \implies Require, e.g., collimators to limit field of view.

Example: Proportional Counters

Imaging detectors

Detectors with a spatial resolution, typically used in the IR, optical, UV or for soft X-rays. Generally behind some type of focusing optics.

Example: Charge coupled devices (CCDs)

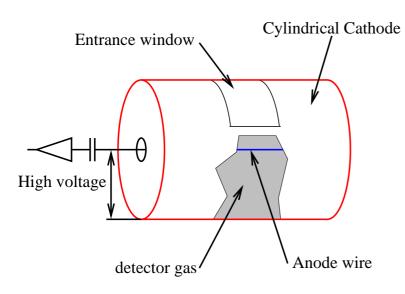

Here: will concentrate on detectors for X-rays and optical light, starting with non-imaging detectors.

Introduction

3–3

Ionization chamber

Simplest gas detector: gas-filled capacitor (ionization chamber)


- photon is photo absorbed in detector gas
- \bullet K-shell electron ejected with energy \propto initial E
- \bullet through collisional ionization N charges are produced
- Electrostatic induction induces charge on capacitor plates
- Charges drain via $R \Longrightarrow$ Measurement

Pulse height: $\Delta Q = -Ne = C\Delta U \Longrightarrow \Delta U = -Ne/C$

Typical magnitude of signal: C= 20 pF, Ne= 2 \times 10⁵ e $^-\cdot e\Longrightarrow \Delta U=$ 1.6 mV.

Problem: Pulse very weak since only primary charge measured.

Proportional Counters

where A: amplification factor (typical: $A = 10^4 \dots 10^6$).

Solution: amplify charge

Close to Anodewire:

 $E(r) = V/(r \ln(b/a)$ (*b* radius of cathode, *a* radius of anode)

⇒ Strong acceleration of ionized particles

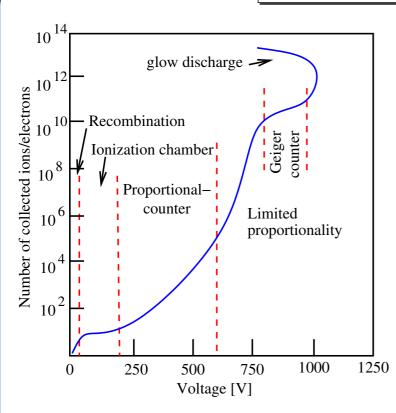
⇒ collisional ionization of gas

 \Longrightarrow cascade!

Measured voltage:

$$\Delta U = -\frac{eN}{C} \cdot \mathbf{A}$$

Since $A \sim \text{const.}$: Voltage pulse $\propto N$, and therefore Voltage pulse $\propto \text{detected X-ray energy!}$ and therefore: "proportional counter"


Proportional counters

3–5

2

Pulse Amplification

Pulse amplification in detector as a function of anode voltage.

Typical proportional counter voltages are several 100 to 1000 V (depending on detector gas).

(after Grupen, Fig.4.21)

Detector Gas

Use inert gases, e.g., Ar or Xe, since required voltage smallest and only low losses due to excitation of the gas atoms.

Number of ions produced: $N=E/\omega$, where ω is given by:

Gas	Н	He	Ne	Ar	Kr
ω [eV]	36.6	44.4	36.8	26.25	24.1
Gas	Xe	Air	CO ₂	CH ₄	
ω [eV]	21.9	35.2	34.2	29.1	

 \implies Typically $N \sim$ 1000 electron-ion pairs per 20 keV photon.

Note:

- probability for absorption $\sigma_{\rm bf} \propto Z^{4...5} \Longrightarrow$ use Xenon (Z=54) for astronomical detectors
- since $\sigma_{\rm bf} \propto E^{-3}$ \Longrightarrow proportional counters limited to E < 100 keV.

Proportional counters

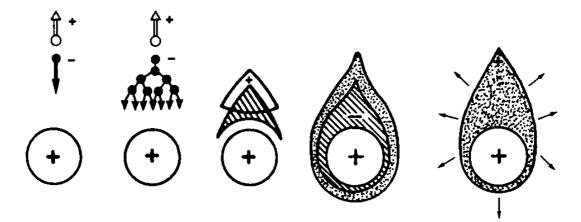
3–7

Electron

Gas ions

Electron

cascade


Secondary electrons

anode wire

Grupen (Fig. 4.9)

Typical electron paths $pprox \mu \mathbf{m} \Longrightarrow$ Cascade happens very close to anode wire

Cascade, II

Grupen (Fig. 4.27)

Electrons are accelerated to very high speeds towards wire, lons are accelerated away from wire

⇒ Main signal from ions, *not* electrons, since ions have larger potential difference

typical duration of signal \sim 100 $\mu \rm s$, can reach higher time resolution by differentiating the signal

Proportional counters

6

3-9

Energy Resolution

Measured signal: pulse height ⇒ Energy of the X-ray

Resolution: ΔE : Width (=FWHM, Full Width at Half Maximum) of the distribution of measured energies.

Poisson statistics (N discrete Electron-Ion pairs!):

$$\Delta E \propto$$
 2.35 $\sqrt{N} \propto$ 2.35 \sqrt{E}

Typically one uses $\Delta E/E$

Slight correlations due to amplifying discharge \Longrightarrow Width of distribution somewhat smaller than expected from Poisson statistics \Longrightarrow Fano Factor F:

$$\frac{\Delta E}{E} = 2.35 \left(\frac{F}{N}\right)^{1/2}$$

where for gas detectors $F \sim$ 0.2–0.3

More detailed theory yields

$$\frac{\Delta E}{E} = 2.35 \left(\frac{W(F+A)}{E}\right)^{1/2}$$

W: mean energy to produce a pair (26 eV for Ar+Methane), $F\sim$ 0.2, $A\sim$ 0.6 \Longrightarrow up to 14% at 5.9 keV doable.

Quenching

Problem: Excited ions emit UV photons \Longrightarrow formation of new cascades due to photo effect \Longrightarrow Total cascade takes a long time \Longrightarrow large dead time.

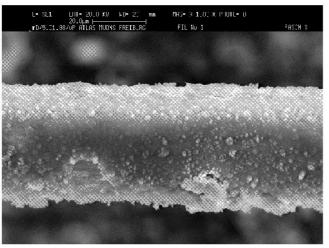
Solution: Absorption of UV photons in "quenching gas", which is added to primary photomultiplier gas \Longrightarrow cascade $< 1 \,\mu s$

Energy of excited quenching gas is dumped later via inelastic collisions within the gas

Also direct quenching of cascade, e.g., via

$$\mathsf{Ar}^+ + \mathsf{CH_4} \longrightarrow \mathsf{Ar} + \mathsf{CH}^+$$

Typical quenching gases: CH₄, alcohol (C₂H₅OH), CO₂, BF₃, . . . (about $\sim 10\%$ of total gas pressure).


Often used: "P10-gas" (90% Ar and 10% CH₄)

Proportional counters

3–11

Ageing

Marko Spegel, 1999 (Diss. Uni Wien), J. Vavra, SLAC-3882

CATHODE SURFACE

B lon

Charged
Polymer

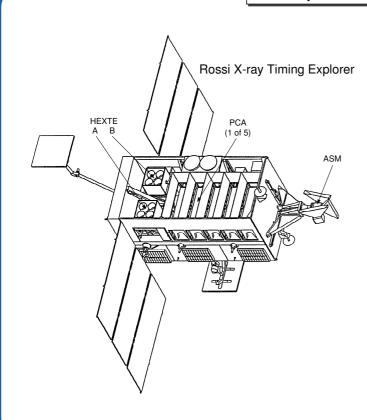
GAS FLOW

Avalanche
Sticks to the
Socioals
With Dipole
Moment

Attraction

Attraction

Polymer


ANODE SURFACE

Cascade: plasma discharge \Longrightarrow Destruction of gas contaminants \Longrightarrow formation of free radicals \Longrightarrow polymerization

Polymers have high dipole moment \Longrightarrow attach to electrodes \Longrightarrow Reduction of pulse charges \Longrightarrow "Ageing" Typical contaminants: carbon, oxide-layers, silicates, e.g., from oil, finger grease, Silan (SiH₄), solvents in vacuum sealants,...

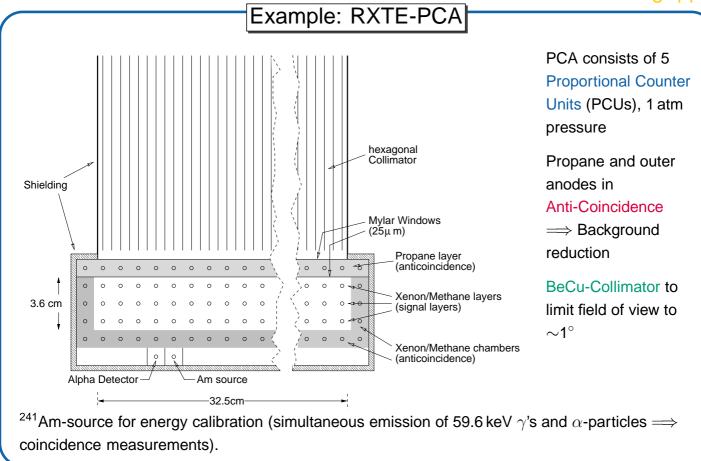
Results in field electron emission through photo-effect \Longrightarrow discharge \Longrightarrow wire destroyed ("Malter-Effekt") Most sensitive proportional counter gas: Ar/CH₄...

Example: RXTE-PCA

Rossi-X-ray Timing Explorer, Launch 30.12.1995, 3 instruments:

- Proportional Counter Array (PCA, 2–100 keV),
- High Energy X-ray Timing Experiment (HEXTE, 15–250 keV),
- All Sky Monitor (ASM, 2–10 keV) PCA and HEXTE have μ sec timing resolution

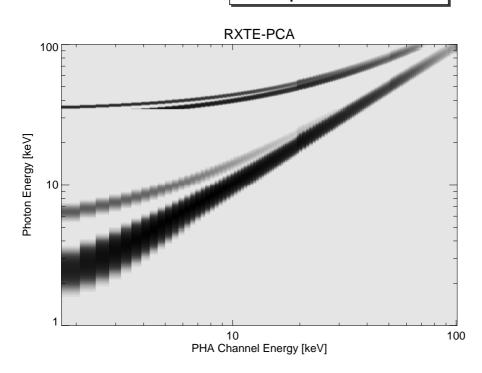
Proportional counters



10

3–13

Example: RXTE-PCA

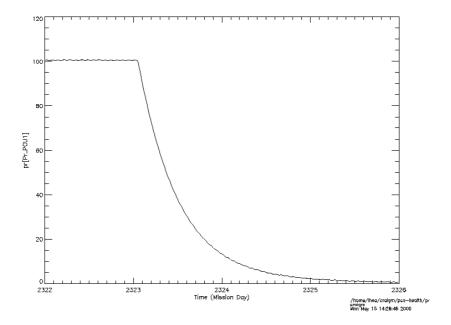

Proportional counters

12

3-16

Example: RXTE-PCA

Response matrix:


Relation between incident photon energy and detection channel.

Resolution: 18% at

6 keV

Escape-Peaks caused by Xe K α ($E=29.46\,\mathrm{keV}$) and Xe L α ($E=4.11\,\mathrm{keV}$) photons leaving the detector without being detected.

Example: RXTE-PCA

 \ldots this is what happens once a Mylar window starts having a hole in space In addition ageing \Longrightarrow Reduction of high voltage, alternate use of different PCUs.

