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Introduction 1

Introduction

To obtain the synchrotron radiation spectrum, we will have to perform the

following steps:

1. Derive the motion of electrons in magnetic fields

2. Then use Larmor’s formula to obtain the radiation characteristic from
relativistic motion

3. Use the Doppler-effect to convert into the observer’s frame of reference.

4. Integrate over electron distribution to obtain the final spectrum.

It is possible to do the same analytically without any approximations, however, we
will use an approximate way here that is good enough to give the exact answer.



6–2

Synchrotron radiation (=Magnetobremsstrahlung) is the energy radiated by charged particles moving in magnetic fields. We already know how to compute the energy loss
via Larmor’s formula, so what remains to do is to compute the acceleration that a particle has in a magnetic field.

We have to start, therefore, by looking at the motion of (relativistic) charges q in magnetic fields.

Assuming no electric field is present (which is the case, given that the universe is charge neutral, i.e., we can assume the same number of electrons and protons present),
this motion is described by the Lorentz-Force

dp

dt
= qv ×B where p =

mv
√

1 − β2
= γmv and β = v/c. (6.1)

We will assume that there are no radiative losses, i.e., the only force the charge feels is due to the magnetic field. This is obviously not true on long timescales, because
the particle is radiating synchrotron radiation, but it is generally true on short timescales, as we shall see later.

The velocity vector of the particle can be written in a component parallel to the magnetic field, v‖, and in a component v⊥ perpendicular to the field:

v‖ =
v · B

B

B

B
v⊥ =

B× (v ×B)

B2
(6.2)

|v‖| = v‖ = v cosα |v⊥| = v⊥ = v sin α (6.3)

where α, the pitch-angle, is ∠(v, B)

Since

v × B = (v‖ + v⊥) ×B = v⊥ × B (6.4)

there is no acceleration parallel to the B-field and we can ignore v‖ for the moment. Since the force is perpendicular to v⊥ and B this means that we obtain the equations
for circular motion around the magnetic field:

ma⊥ =
γmv2

⊥

R
= qv⊥B (6.5)

such that

v⊥
R

=
1

γ

qB

γm
(6.6)

The period to go around a circle at velocity v is

P =
2πR

v
(6.7)
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corresponding to a frequency

ω =
2π

P
=

v

R
(6.8)

Therefore we find the frequency with which the charged particle moves around the B-field is given by

ωB =
1

γ

qB

m
=

1

γ
ωL (6.9)

where

ωL =
qB

m
⇐⇒ νL =

ΩL

2π
=

qB

2πm
(6.10)

is called the Larmor frequency (also called the cyclo-frequency or the gyrofrequency.

The radius of the orbit of the particle, the Larmor radius, is

R =
γv⊥
ΩL

(6.11)

To get a feel for some typical orders of magnitude, let’s look at cosmic rays in the interstellar medium. These are produced, e.g., by acceleration of particles in supernova
shock fronts. Instead of using the γ-factor of the particles as above, it is common to use their energy, E . Special relativity shows that the energy and γ are related by

E = γmc2 (6.12)

Therefore, the Larmor radius is

R =
γvm

qB
=

γmc2

qBc
=

1

qc

E

B
(6.13)

For cosmic rays, typical energies are E = 1 GeV = 1.6 × 10−10 J and a typical magnetic field in our milky way is B = 10−10 T. With these values we obtain
R = 3 × 1011 m ∼ 2 AU. This means that the radii are very small compared to typical length scales in the galaxy (which are measured in 10s of parsecs, where
1 pc = 206525 AU). Therefore, we can say that cosmic rays are “frozen” into the magnetic field of our Galaxy and move “along” the magnetic field lines.
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Radiated Energy 1

Radiated Energy

Electrodynamics: Radiation of an accelerated electron:

Pem =
q2

6πc3ε0
γ4
(

v̇2
⊥ + γ2v̇2

‖

)

(6.14)

Derivation by Lorentz-Transforming the classical formula for dipole radiation (P = 2e2/3c3 · a3). Messy.

In case of circular motion, v̇⊥ = ωBv⊥. Hence

Pem =
q2

6πc3ε0
γ4v

2
⊥q2B2

γ2m2
= 2β2γ2c · σT · UB · sin2 α (6.15)

where (for electrons, i.e., q = e)

UB = B2/2µ0 (Energy density of the B-field), (6.16)

σT =
µ0e

4

6πm2
eε0c2

(Thomson-cross section) (6.17)

Presence of σT due to quantum electrodynamics: Derivation of synchrotron-radiation in frame of reference of
electron via interaction of electron with a virtual photon of the magnetic field (i.e., Compton scattering with
virtual photon).
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Radiated Energy 2

Radiated Energy

Total energy radiated: Integration over all electrons.

Assumption: Isotropic velocity distribution.

Average pitch angle
〈

sin2 α
〉

=
1

4π

∫ 4π

0
sin2 αdΩ =

1

4π

∫ 2π

0

∫ π

0
sin2 α sin α dαdϕ =

2

3
(6.18)

therefore

〈Pem〉 =
4

3
β2γ2cσTUB (6.19)

for β −→ 1.

Note: Since E = γmc2 =⇒ P ∝ E2UB.
Note: Pem ∝ σT ∝ m−2 =⇒ Synchrotron radiation from charged particles with larger mass

(protons,. . . ) is negligible.
Note: Life-time of particle of energy E is

t1/2 ∼
E

P
∝ 1/(B2E) = 5 s

(

B

1 T

)−2

γ−1 = 1.6 × 107 years

(

B

10−7 T

)−2

γ−1 (6.20)
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Emitted spectrum 1

Single Electron spectrum, I
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after Rybicki & Lightman, Fig. 3.5

Frame of reference of electron:
Emitted radiation has dipole

characteristic (see, e.g., Eq. 5.7).

γ

v

−1

v

.

after Rybicki & Lightman, Fig. 4.11d

Lorentz-Transform into laboratory
system: Forward Beaming. Opening

angle is ∆θ ≈ γ−1.
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Emitted spectrum 2

Single Electron spectrum, II

Rybicki & Lightman, Fig. 6.2

In the electron frame of rest, beam passes observer during time

∆t =
∆θ

ωB

=
mecγ

eB

2

γ
=

2

ωL

(6.21)
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Emitted spectrum 3

Single Electron spectrum, III

But: Doppler effect shortens duration of pulse (electron is closer to observer at

end of beam).
=⇒ Duration of pulse:

τ =
(

1 −
v

c

)

∆t = (1 − β)∆t (6.22)

For γ � 1, i.e., β = v/c ∼ 1

1

γ2
= 1 −

v2

c2
= (1 + β)(1 − β) ∼ 2(1 − β) (6.23)

such that

τ =
1

2

(

1 −
v2

c2

)

∆t =
1

γ2ωL

(6.24)

Thus the characteristic frequency of the radiation is given by

ωc = γ2ωL =
eB

mec

(

E

mec2

)2

(6.25)
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Emitted spectrum 4

Resulting Field

Shu, Fig. 18.2

The observed time-dependent E-Field, E(t), from one electron is a sequence of pulses of width

τ , separated by ∆t.

Can approximate to good precision these single peaks by δ-functions.

In reality: Derive spectrum by Fourier-transforming E(t). Basic result is the same.
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Power-law Distribution 1

Power-law distribution, I

Spectral energy distribution Pν of an electron with total energy E = γmec
2 as

Pν(γ) =
4

3
β2γ2cσTUBδ(ν − γ2νL) (6.26)

where δ(x) is a δ-function, i.e.,

δ(x) = 0 for x 6= 0 and

∫

+∞

−∞

δ(x) dx = 1 (6.27)

i.e., electron with energy γmc2 “blinks” at frequency ν = γ2νL.

By definition, for nonthermal synchrotron radiation, electrons have a power-law
distribution

n(γ)dγ = n0γ
−pdγ (6.28)
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Power-law Distribution 2

Power-law distribution, II

Power emitted by electron distribution (=spectrum) found by integrating over all
electrons

Pν =

∫ ∞

1

Pν(γ)n(γ)dγ (6.29)
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Power-law Distribution 3

Power-law distribution, III

Therefore

Pν =

∫ ∞

1

4

3
β2γ2cσTUBδ(ν − γ2νL)n0γ

−pdγ (6.30)

since γ � 1: β ≈ 1

= A

∫ ∞

1
γ2−pδ(ν − γ2νL)dγ (6.31)

substituting ν ′ = γ2νL, i.e., dν ′ = 2νLγdγ

= B

∫ ∞

νL

γ1−pδ(ν − ν ′)dν ′ (6.32)

since γ = (ν/νL)1/2, one finally finds

Pν =
2

3
cσTn0

UB

νL

(

ν

νL

)−p−1
2

(6.33)

The spectrum of an electron power-law distribution is a power-law!
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Application of Synchrotron Radiation
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Crab Nebula 2

Crab nebula at 90 cm (NRAO 300′ telescope), resolu-
tion 1.3′′

The characteristic frequency was

νc =
ωc

2π
(6.25)

= 6300

(

B

10−7 T

)

(

E/mec
2

103

)2

MHz

(7.1)

Optical light has ν ∼ 108 MHz. To

emit this frequency, the electrons
must have γ ∼ 106 for a typical

B-field!

Life time of electrons with γ = 106 (per Eq. 6.20): 16 years.
Diameter of Crab: ∼2 pc =⇒ it is not a problem to deliver all energy by

accelerating electrons at the center of the neutron star in the center of the
nebula.



Galactic Center, courtesy NRAO

Emission from Sgr A, the galactic

center: spectrum characteristic for
synchrotron radiation.

Note how emissivity follows B-field structure!



B-field vectors inferred

from the degree of
polarization in spiral

galaxy M51 by rotation
of the observed

E-field-vectors by 90◦

(Neininger 1992, A&A
263, 30)

AGN M87; courtesy Frazer Owen


