

$$\frac{\Delta E}{E} = -\frac{E}{m_{\rm e}c^2} \tag{8.16}$$

Assuming a thermal (Maxwell) distribution of electrons (i.e., they're not at rest), one can show that the relative energy change is given by

$$\frac{\Delta E}{E} = \frac{4kT - E}{m_{\rm e}c^2} = A \tag{8.48}$$

where \boldsymbol{A} is the Compton amplification factor. Thus:

 $E \lesssim 4kT_{e} \Longrightarrow$ Photons gain energy, gas cools down. $E \gtrsim 4kT_{e} \Longrightarrow$ Photons loose energy, gas heats up.

Amplification factor, II

In reality, photons will scatter more than once before leaving the hot electron medium.

The *total* relative energy change of photons by traversal of a hot ($E \ll kT_e$) medium with electron density n_e and size ℓ is then approximately

 $(rel. energy change y) = \frac{rel. energy change}{scattering} \times (\# scatterings)$ (8.49)

The number of scatterings is $max(\tau_e, \tau_e^2)$, where $\tau_e = n_e \sigma_T \ell$ ("optical depth"), such that

$$y = \frac{4kT_{\rm e}}{m_{\rm e}c^2} \max(\tau_{\rm e}, \tau_{\rm e}^2)$$
(8.50)

"Compton *y*-Parameter"

Thermal Comptonization

THE UNIVERSITY OF

Spectral shape

8–15

2

Photon spectra can be found by analytically solving the "Kompaneets equation", but this is very difficult.

Approximate spectral shape from the following arguments: After k scatterings, the energy of a photon with initial energy E_i is approximately

$$E_k = E_i A^k \tag{8.51}$$

But the probability to undergo k scatterings in a cloud with optical depth τ_e is $p_k(\tau_e) = \tau_e^k$ (follows from theory of random walks, note that the mean free path is $\ell = 1/\tau_e$).

Therefore, if there are $N(E_{\rm i})$ photons initially, then the number of photons emerging at energy E_k is

$$N(E_k) \sim N(E_i)A^k \sim N(E_i) \left(\frac{E_k}{E_i}\right)^{-\alpha}$$
 with $\alpha = -\frac{\ln \tau_e}{\ln A}$ (8.52)

Comptonization produces power-law spectra.

the university of WARWICK

General solution: Possible via the Monte Carlo method.

Thermal Comptonization

Thermal Comptonization

THE UNIVERSITY OF

Application of Comptonization

THE UNIVERSITY OF

INTEGRAL/RXTE, III

Fit of a Comptonization model to *RXTE/INTEGRAL* data from the galactic black hole Cygnus X-1

 $kT_{
m soft} =$ 1.21 keV, $au_{
m e} =$ 1.09, $kT_{
m e} \sim$ 100 keV

Note presence of a Compton reflection hump (evidence of close vicinity of hot electrons and only mildly ionised material)

Observations

THE UNIVERSITY OF

4

9-4

Observations

THE UNIVERSITY OF