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3rd Year Modules 2004/2005
Term 1, Week 01–05

PX318: Astrophysics from Space – Example Solutions

Academic Week 04: Comptonization

Question 1: Power law slope for Compton scattering
NB: This question is rather lengthy, but given that it is currently rainy and windy, it is still well worth your
time. . .
NOTE: The question as originally distributed during the lectures contained a few typos. Sorry!

a) A slab of thickness̀ and electron number densityn (measured in units of electrons m−3) is irradiated by
light with initial intensityN0 (whereN is the number of photons per second and square-metre). Convince
yourself that due to scattering, the decrease in photon number over infinitesimal distancedx is given by

dN
N
= −nσdx (1.1)

whereσ is the Thomson cross section. Use Eq. 1.1 to show that the number of photons emerging in the
original direction of the photons on the other side of the slab is

N(`) = N0 exp(−τ) (1.2)

whereτ = nσ`.

Solution: For an infinitely thin slab, the area density of electrons is given by n · dx (units: electrons per
square metre). For the purposes of scattering, each electron can be seen to have an areaσ, such that the area
nσdx is can be considered covered by the electrons. Once a photon hits this area, it is scattered out of the
line of sight, and therefore the decrease in photon flux is

dN = −nσNdx (s1.1)

Writing this equation as
1
N

dN
dx
= −nσ (s1.2)

and integrating overdx then gives
∫ `

0

1
N

dN
dx

dx = −
∫ `

0
nσdx ←→ log

(

N(`)
N0

)

= −nσ` (s1.3)

and therefore
N(`) = N0 exp(−nσ`) = N0 exp(−τ) (s1.4)

b) Using Eq. (1.2), convince yourself that the probability of a photon to travel at least an optical depthτ is

p(τ) = exp(−τ) (1.5)

and that the mean optical depth traveled before the photon scatters,〈τ〉 = 1.

Solution: The mean optical depth traveled is given by

〈τ〉 =

∫ ∞

0
τ exp(−τ)dτ

∫ ∞

0
exp(−τ)dτ

(s1.5)
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The denominator integrates to 1 such that

〈τ〉 =

∫ ∞

0
τ exp(−τ)dτ =

[

exp(−τ)τ
]∞
0 +

∫ ∞

0
exp(−τ)dτ = 1 (s1.6)

where partial integration was used to solve the integral.

c) Use the result from the previous section to show that the mean physical distance traveled in the slab, the
mean free path l, is

l =
1

nσ
(1.7)

Solution: The mean optical depth traveled is〈τ〉 = nσ` = 1, and therefore the mean distance traveled
between scatters is

` =
1

nσ
(s1.7)

d) Show that for smallτ the probability of a photon undergoingk scatterings before escaping the medium is
approximately

pk(τ) ∼ τk (1.8)

Solution: The probability that the photon escapes after one scattering is

p1(τ) = 1− exp(−τ) ∼ τ (s1.8)

for τ small. The desired answer then follows by induction.

e) For Compton scattering and a seed photon energyEs� kT , the amplification factor is

A ∼
4kT

mc2
(1.9)

Show that afterk scatterings the energy of the seed photon,Ek , is approximately

Ek ∼ EsAk (1.10)

Solution: The energy of the photon after one scattering is

E1 = EsA (s1.9)

and by induction, its energy afterk scatterings is

Ek = Ek−1A = EsAk (s1.10)

f) Using Eqs. 1.8 and 1.10, show that the emergent intensity at energyEk is a power law

N(Ek) = N(Es)

(

Ek

Es

)−α

where α = −
ln τ
ln A

(1.11)

Solution: The intensity emerging at energyEk is approximately proportional topk(τ) since to first order
only photons upscattered toEk will contribute to the emerging spectrum. Therefore

N(Ek) = N(Es)pk(τ) = N(Es)τ
k (s1.11)
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But because ofEk = EsAk,
k = ln(Ek/Es)/ ln A (s1.12)

and therefore

τk = τln(Ek/Es)/ ln A =
(

exp(lnτ)
)ln(Ek/Es)/ ln A

= exp(ln(Ek/Es) ln τ/ ln A) =

(

Ek

Es

)ln τ/ ln A

=

(

Ek

Es

)−α

(s1.13)

with α = − ln τ/ ln A.
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Question 2: Even More Compton Scattering

a) Show that the formula for the energy change of the electron,

E′ =
E

1+ E
mec2 (1− cosθ)

(2.1)

can be written as

λ′ − λ =
h

mec
(1− cosθ) (2.2)

whereλ andλ′ are the photon’s wavelength before and after the scatteringand whereh/mec is called the
Compton wavelength.

Solution: The photon energy isE = hν = hc/λ and therefore

1
λ′
=

1
λ

1+ 1
λ

h
mec (1− cosθ)

(s2.1)

such that

λ′ = λ +
h

mec
(1− cosθ) (s2.2)

b) The following figure is from A.H. Compton’s discovery paper on the effect of electron scattering on photons,
which eventually resulted in this effect being called the “Compton effect”:

Compton irradiated a block of graphite with X-rays from a Molybdenium source. As shown in the figure,
he found that the observed spectrum was shifted by 0.022 Å when looking at the graphite block under an
angle of 90◦. This small shift is due to Compton scattering in graphite (wavelength is measured in degrees
in the figure above, since Compton used a crystal spectrometer to do his spectroscopy).
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Compute the wavelength shift using the equations above and compare it to the measured value.

After doing this you might want to read Compton’s original 1923 paper (Phys. Rev. 21, 483-502), available at
http://prola.aps.org/abstract/PR/v21/i5/p483 1/p483 from all computers within thewarwick.
ac.uk domain. This paper is a beautiful piece of work, which finallyconvinced many physicists in the
1920s of the reality of the quantum nature of radiation. It isalso one of the papers which eventually gained
Compton his nobel prize in 1927, at age 35, “for the discoveryof the effect named after him” (seehttp:
//nobelprize.org/physics/laureates/1927/compton-bio.html).

Solution: straightforward. . .
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Question 3: Synchrotron Self-Compton Radiation
The broad-band spectra of radio-loud AGN are dominated by two humps: a low energy hump thought to be due
to synchrotron radiation and a high energy hump, going up to TeV energies.

a) Compute the energy andγ-factor needed for an electron in a 10−7 T magnetic field to emit photons with an
energy of 10 keV.

Solution: According to the lectures (Eq. 6.25), the characteristic radiation for synchrotron radiation of
electrons with energyE in a magnetic fieldB is given by

ωc = 2πνc
eB
me

(

E

mec2

)2

=
eB
me
γ2 (s3.1)

Because ofE = hν = hωc/2π, for a 10 keV photon:

ωc =
2πE

h
=

2π · 10 keV
4.136× 10−18 keV s

= 1.5× 1019 s−1 (s3.2)

Therefore

γ =

√

meωc

eB
=

√

9.11× 10−31 kg · 1.5× 1019s−1

1.6× 10−19C · 10−7 T
= 2.7× 108 (s3.3)

b) What is the typical energy of such 10 keV photons after one Compton scattering with the electrons which
produced them?

Solution: As shown in the lectures (Eq. 8.32), the approximate energy gain in relativistic Compton scatter-
ing is

Eafter = γ
2Ebefore= 7× 1018 eV (s3.4)

Note: For a multitude of reasons, in realistic active galaxies, the γ-factors are significantly smaller than
what you get in the answers to this question, however, the physics described here is in principle still the one
powering the jets in active galaxies and quasars. In reality, the electrons in these systems make synchrotron
radiation in the optical and UV, which is then upscattered into the gamma-rays, with correspondinglysmaller
γ-factors.

Question 4: Comments on this week’s lectures
In order to improve the teaching and to enable myself to reactto problems you might have with the module, I
would like to hear your opinion on my teaching as early as possible. I would appreciate it if you would voice
any problems and criticisms as soon as possible, e.g., on thespeed with which I talk about the subjects of the
lectures, the overall difficulty level of the class and the homework, the quality and contents of the handouts, and
so on.
Please write these comments on a separate sheet of paper and give them to me: Either put the paper on the
lectern before class or put it in my “pigeon hole” in the mailboxes on the 5th floor of the physics building, close
to the physics undergraduate office. Feel free to remain anonymous, if you deem this necessary. You can also
ask questions by sending email toj.wilms@warwick.ac.uk.

Solutions to all questions can be found at http://pulsar.astro.warwick.ac.uk/wilms/
teach/astrospace/handouts.html.
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