

Application of Synchrotron Radiation

Crab nebula at 90 cm (NRAO 300' telescope), resolution 1.3''

The characteristic frequency was

$$\nu_{\rm c} = \frac{\omega_{\rm c}}{2\pi}$$
(6.25)
= 6300 $\left(\frac{B}{10^{-7} \,{\rm T}}\right) \left(\frac{E/m_{\rm e}c^2}{10^3}\right)^2$ MHz
(7.1)

Optical light has $\nu \sim 10^8$ MHz. To emit this frequency, the electrons must have $\gamma \sim 10^6$ for a typical *B*-field!

Life time of electrons with $\gamma = 10^6$ (per Eq. 6.20): 16 years. Diameter of Crab: $\sim 2 \text{ pc} \implies$ it is not a problem to deliver all energy by accelerating electrons at the center of the neutron star in the center of the nebula.

Crab Nebula

THE UNIVERSITY OF

7—3

Galactic Center, courtesy NRAO

Emission from Sgr A, the galactic center: spectrum characteristic for synchrotron radiation.

Note how emissivity follows *B*-field structure!

M51 20cm Total Intensity+Magnetic Field (VLA)

Copyright: MPIR Bonn (R.Beck, C.Borellon & N.Neininger)

B-field vectors inferred from the degree of polarization in spiral galaxy M51 by rotation of the observed E-field-vectors by 90° (Neininger 1992, A&A 263, 30)

AGN M87; courtesy Frazer Owen