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Introduction 1

Introduction

Comptonization: Upscattering of low-energy photons by inverse
Compton collisions in a hot electron gas.

Astronomically important in

• galactic black hole candidates

• active galactic nuclei

Structure:
1. Scattering of photons off stationary electrons (Thomson scattering)

2. Quantum mechanical analogue (Compton scattering).

3. Scattering off nonstationary electrons
4. Results of detailed theory



8–3

Thomson Scattering 1

Thomson Scattering

e

Θ
ε

after Rybicki&Lightman, Fig. 3.6

Look at radiation from free electron in response to excitation of electron by an electromagnetic

wave E0 sin ω0t (pointing in direction of unit-vector ε):

Force on charge

F = mev̇ = qE0 sin ω0t ε (8.1)

This neglects the B-field, i.e., assumes v � c.

=⇒ The electron feels an acceleration, v̇, and therefore it radiates!
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Thomson Scattering

Larmor’s formula gives the power radiated through the spherical angle dΩ in

direction Θ:

dP

dΩ
(Θ) =

1

16π2c3ε0
q2v̇2 sin2 Θ and (avg. over Ω) P =

q2v̇2

6πc3ε0
(8.2)

This follows from Eq. (5.7), which gives the flux through an area element dA = r2dΩ.

Inserting E(t) gives

dP

dΩ
(t) =

q2

16π2c3ε0

q2E2
0

m2
sin2 ω0t sin2 Θ and P (t) =

q2

6πc3ε0

q2E2
0

m2
sin2 ω0t

(8.3)
To obtain the average power emitted: average over time (

〈

sin2 ω0t
〉

= 1/2)

dP

dΩ
=

q4E2
0

16π2m2c3ε0
sin2 Θ and P =

q4E2
0

12πc3m2ε0
(8.4)

Note that the scattering angle is Θ, not θ. The reason for this will become clear shortly.
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Thomson Scattering

The incident radiation flux on the electron (i.e., c × energy density for radiation)

〈S〉 =
cε0

2
E2

0 (8.5)

We define the differential cross section for Thomson scattering, dσ/dΩ, such that

dP

dΩ
= 〈S〉 dσ

dΩ
⇐⇒ q4E2

0

16π2m2c3ε0
sin2 Θ =

cε2
0

2
E2

0

dσ

dΩ
(8.6)

such that

dσ

dΩ

∣

∣

∣

∣

polarized

=
q4

8π2m2c4ε2
0

sin2 Θ = r2
0 sin2 Θ (8.7)

with the classical electron radius

r0 =
e2

4πmec2ε0
= 2.82 × 10−15 m (8.8)

Visualization: dσ/dΩ is the area presented by the electron to a photon that is going to get

scattered in direction dΩ.



8–6

Thomson Scattering 4

Thomson Scattering

An identical derivation yields the total cross section for Thomson scattering,

defined via
P = 〈S〉 σ (8.9)

to obtain

σ =
8π

3
r2

0 =: σT (8.10)

where

σT =
e4

6πm2
eε

2
0c

4
= 6.652 × 10−29 m2 (8.11)

(Thomson cross section)

Previous versions of σT used in these lectures are identical to the above if you strategically make use of
ε0µ0 = c2!
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Thomson Scattering

Θ

π/2

θ

k

ε

ε

1

2

n

after Rybicki & Lightman, Fig. 3.7

For linear polarized light: scattered radiation

is linearly polarized in direction of incident

polarization vector, ε, and direction of

scattering, n.

To compute σ for nonpolarized radiation, note:

nonpolarized radiation =
∑

polarized beams at∠(90◦)

Thus, to scatter nonpolarized radiation

propagating in direction k into direction n,

need to average two scatterings:

dσ

dΩ

∣

∣

∣

∣

unpol
=

1

2

(

dσ(Θ)

dΩ

∣

∣

∣

∣

pol
+

dσ(π/2)

dΩ

∣

∣

∣

∣

pol

)

(8.12)

Let θ = ∠(k, n) to obtain

dσ

dΩ

∣

∣

∣

∣

unpol
=

r2
0

2
(1 + cos2 θ) =

3σT

16π
(1 + cos2 θ) and

∫

dσ

dΩ
dΩ = σT

(8.13)
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Compton Scattering

E’, p
’

E, p θ

T

Thomson scattering: initial and final

wavelength identical.

But: in reality: light consists of photons

=⇒ Scattering: photon changes direction

=⇒ Momentum change

=⇒ Energy change!

This is quantum picture =⇒ Compton

scattering.

Energy/wavelength change (see handout):

E ′ =
E

1 + E
mec2(1 − cos θ)

∼ E

(

1 − E

mec2
(1 − cos θ)

)

(8.14)

λ′ − λ =
h

mec
(1 − cos θ) (8.15)

where h/mec = 2.426 × 10−12 m (Compton wavelength).

Averaging over θ, for E � mec:
∆E

E
≈ − E

mec2
(8.16)

E.g., at 6.4 keV, ∆E ≈ 0.2 keV.
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The following derivation will not be assessed (but you should know the end result!).

The derivation of Eq. (8.14) is most simply done in special relativity using four-vectors. In the following, we will use capital letters for four-vectors and small letters for
three-vectors. Furthermore, we will adopt the convention

P ·Q = P0Q0 − P1Q1 − P2Q2 − P3Q3 (8.17)

for the product of two four vectors, following, e.g., the convention of Rindler (1991, Introduction to Special Relativity).

The four-momentum of a particle with non-zero rest-mass, m0, e.g., an electron, is

Q = m0γ

(

c

v

)

=

(

m0γc

q

)

(8.18)

where v is the velocity of the particle and q its momentum. As usual, γ = (1 − (v/c)2)−1/2. The square of Q is

Q2 = m2
0γ

2c2 − m2
0γ

2v2 = m2
0c

2γ2

(

1 −
(

v2

c2

))

= m2
0c

2 (8.19)

Obviously, Q2 is relativistically invariant.

In the same spirit, the four-momentum of a photon is

P =
E

c

(

1

û

)

(8.20)

where û is an unit-vector pointing into the direction of motion of the photon. Note that for photons

P2 = 0 (8.21)

as the photon’s rest-mass is zero.

We will now look at the collision between a photon and an electron. We will denote the four-momenta after the collision with primed quantities.

Conservation of four-momentum requires
P + Q = P′ + Q′ (8.22)

We now use a trick from Lightman et al. (1975, Problem Book in Relativity and Gravitation), solving this equation for Q′ and squaring the resulting expression:

(P + Q −P′)2 = (Q′)2 (8.23)

Since the collision is elastic, i.e., the rest mass of the electron is not changed by the collision,

Q2 = (Q′)2 (8.24)
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furthermore, P2 = (P′)2 = 0, such that
P ·Q −P ·P′ − Q ·P′ = 0 ⇐⇒ P ·P′ = Q · (P−P′) (8.25)

But in the frame where the electron is initially at rest,

Q · (P−P′) = mec

(

E

c
− E ′

c

)

= m(E − E ′) (8.26)

P ·P′ =
E

c

E ′

c
(1 − û · û′) =

EE ′

c2
(1 − cos θ) (8.27)

where θ = ∠(û, û′). Inserting into Eq. (8.25) and solving for E ′ gives Eq. (8.14).
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Compton Scattering
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Proper derivation of cross

section done in quantum
electrodynamics.

In the limit of low energies: will
find Thomson result, for higher

energies: relativistic effects
become important.

For unpolarized radiation,

dσes

dΩ
=

3

16π
σT

(

E ′

E

)2(
E

E ′ +
E ′

E
− sin2 θ

)

(8.28)

(Klein-Nishina formula).
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Compton Scattering
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1 barn = 10−28 m2

Integrating over dσes/dΩ gives total cross-section:

σes =
3

4
σT

[

1 + x

x3

{

2x(1 + x)

1 + 2x
− ln(1 + 2x)

}

+
1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

]

(8.29)

where x = E/mec
2.
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Energy Exchange

For non-stationary electrons, use previous formulae and Lorentz transform

photon into electron’s frame of rest (FoR):

1. Lab system ⇒ electron’s frame of rest:

EFoR = ELabγ(1 − β cos θ) (8.30)

2. Scattering occurs, gives E ′
FoR.

3. Electron’s frame of rest ⇒ Lab system:

E ′
Lab = E ′

FoRγ(1 + β cos θ′) (8.31)

Therefore, if electron is relativistic:

E ′
Lab ∼ γ2ELab

(8.32)

since (on average) θ, θ′ are O(π/2) (beaming!).

Thus: Energy transfer is very efficient.
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Compton catastrophe

One can show (see handout) that the net power gained by photons scattering off monoenergetic

electrons with gamma-factor γ is

Pcompt =
4

3
σTcγ

2β2Urad (8.33)

where Urad is the energy density of the photon field (see handout).

But the power emitted by synchrotron radiation in a B-field of energy density UB was

Psynch =
4

3
σTcγ

2β2UB (6.19)

Magnetized plasma: synchrotron photons are inverse Compton scattered by the electrons. Ratio

of emitted powers:

Pcompt

Psynch
=

Urad

UB
(8.34)

Consequence of the fact that (in QED) synchrotron radiation is inverse Compton scattering off virtual photons
of the B-field.

For Urad > UB this means Pcompt > Psynch =⇒ (synchrotron) photon field will undergo dramatic

amplification =⇒ very efficient cooling of electrons by inverse Compton losses (Compton

catastrophe). =⇒ This defines a maximum brightness for any synchrotron emitting source.
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The following derivation will not be assessed (but you should know its result!).

To derive Eq. (8.33), we first look at the energy budget of one single scattering.

The total power emitted in the frame of rest of the electron is given by

dE ′
FoR

dtFoR

∣

∣

∣

∣

em

=

∫

cσTE
′
FoRV ′(E ′

FoR)dE ′
FoR (8.35)

where V ′(E ′) is the photon energy density distribution (number of photons per cubic metre with an energy between E ′ and E ′ + dE ′).

One can show that is Lorentz invariant:
VLab(ELab)dELab

ELab
=

VFoR(EFoR)dEFoR

EFoR
(8.36)

In the “Thomson limit” one assumes that the energy change of the photon in the rest frame of the electron is small,

E ′
FoR = EFoR (8.37)

Furthermore one can show that the power is Lorentz invariant:
dEFoR

dtFoR
=

dELab

dtLab
(8.38)

(this follows from the fact that the formulae for the Lorentz transform of Energy and time look the same).

Therefore

dELab

dtLab

∣

∣

∣

∣

em

= cσT

∫

E2
FoR

VFoRdEFoR

EFoR
(8.39)

= cσT

∫

E2
FoR

VLabdELab

ELab
(8.40)

. . . Lorentz transforming EFoR

= cσTγ
2
∫

(1 − β cos θ)2ELabVLabdELab (8.41)

. . . averaging over angles (〈cos θ〉 = 0,
〈

cos2 θ
〉

= 1
3)

= cσTγ
2

(

1 +
β2

3

)

Urad (8.42)
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where

Urad =

∫

EV (E)dE (8.43)

(initial photon energy density).

To determine the power gain of the photons, we need to subtract the power irradiated onto the electron,

dELab

dtLab

∣

∣

∣

∣

inc

= cσT

∫

EV (E)dE = σTcUrad (8.44)

Therefore, since
γ2 − 1 = γ2β2 (8.45)

the net power gain of the photon field is

Pcompt =
dELab

dt

∣

∣

∣

∣

em

− dELab

dt

∣

∣

∣

∣

inc

(8.46)

=
4

3
σTcγ

2β2Urad (8.47)
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Amplification factor, I

In electron frame of rest,
∆E

E
= − E

mec2
(8.16)

Assuming a thermal (Maxwell) distribution of electrons (i.e., they’re not at rest),
one can show that the relative energy change is given by

∆E

E
=

4kT − E

mec2
= A (8.48)

where A is the Compton amplification factor.
Thus:

E . 4kTe =⇒ Photons gain energy, gas cools down.

E & 4kTe =⇒ Photons loose energy, gas heats up.
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Amplification factor, II

In reality, photons will scatter more than once before leaving the hot electron

medium.

The total relative energy change of photons by traversal of a hot (E � kTe)
medium with electron density ne and size ` is then approximately

(rel. energy change y) =
rel. energy change

scattering
× (# scatterings) (8.49)

The number of scatterings is max(τe, τ
2
e ), where τe = neσT` (“optical depth”),

such that

y =
4kTe

mec2
max(τe, τ

2
e ) (8.50)

“Compton y-Parameter”
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Spectral shape

Photon spectra can be found by analytically solving the “Kompaneets equation”, but this is very

difficult.

Approximate spectral shape from the following arguments:

After k scatterings, the energy of a photon with initial energy Ei is approximately

Ek = EiA
k (8.51)

But the probability to undergo k scatterings in a cloud with optical depth τe is pk(τe) = τ k
e

(follows from theory of random walks, note that the mean free path is ` = 1/τe).

Therefore, if there are N(Ei) photons initially, then the number of photons emerging at energy Ek

is

N(Ek) ∼ N(Ei)A
k ∼ N(Ei)

(

Ek

Ei

)−α

with α = −ln τe

ln A
(8.52)

Comptonization produces power-law spectra.

General solution: Possible via the Monte Carlo method.
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Spectral shape
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Spectral shape
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Spectral shape

1
2

0.01
[keV]

10.00 1000.00

−
1 

ke
V

−
1 

−
2 

610

105

310

410

]
s

[k
eV

 c
m

E
 N

(E
)

102

110

010
0.10 1.00

E
100.00

τ=5
kT=200 keV



8–17

Thermal Comptonization 8

Spectral shape
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Spectral shape
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Spectral shape

1
2

3

4

5

0.01
[keV]

10.00 1000.00

−
1 

ke
V

−
1 

−
2 

610

105

310

410

]
s

[k
eV

 c
m

E
 N

(E
)

102

110

010
0.10 1.00

E
100.00

τ=5
kT=200 keV



8–17

Thermal Comptonization 11

Spectral shape
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Monte Carlo simulation shows: Spectrum is =⇒ Power law with exponential

cutoff (here: with additional “Wien hump”, see next slide)
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Spectral shape
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2 (∼ 360 keV), seed photons come from
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y � 1: pure power-law.

y < 1: power-law with

exponential cut-off

y � 1: “Saturated

Comptonization”.

Saturated Comptonization has
never been observed.


