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Introduction
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Introduction 1

Schedule

Introduction 01 16.10. Introduction/History

02 23.10. Basic Facts

World Models 03 30.10. World Models

Classical Cosmology 04 06.11. Distances, H0

05 13.11. Distances, H0

The Early Universe 06 20.11. Hot Big Bang Model

07 27.11. Nucleosynthesis

08 04.12. Inflation

11.12. no lecture
Large Scale Structures 09 18.12. Ω and Λ

10 08.01. Dark Matter

11 15.01. Large Scale Structures

12 22.01. Structure Formation

13 29.01. Structure Formation

Summary 14 05.02. Wrap Up
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1–3

Introduction 2

Literature

1. Cosmology Textbooks

SCHNEIDER, P., 2005, Einführung in die Extragalaktische Astronomie und

Kosmologie, Heidelberg: Springer, 59.95C(English edition also available)
Well written introduction to cosmology, approximately at the level of this lecture.

Recommended.

PEACOCK, J.A., 1999, Cosmological Physics, Cambridge: Cambridge Univ.

Press, 49.50C
Very exhaustive, but difficult to read since the entropy per page is very high. . . still: a “must

buy”.

LONGAIR, M.S., 1998, Galaxy Formation, Berlin: Springer, 53.45C
Clear and pedagogical treatment of structure formation, recommended.
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1–4

Introduction 3

Literature

BERGSTRÖM, L. & GOOBAR, A., 1999, Cosmology and Particle Astrophysics,

New York: Wiley, 47.90C
Nice description of the physics relevant to cosmology and high energy astrophysics, focusing

on concepts. Less detailed than Peacock, but easier to digest.

PADMANABHAN, T., 1996, Cosmology and Astrophysics Through Problems,

Cambridge: Cambridge Univ. Press, $36.95
Large collection of standard astrophysical problems (with solutions) ranging from radiation

processes and hydrodynamics to cosmology and general relativity

PADMANABHAN, T., 1993, Structure Formation in the Universe, Cambridge:

Cambridge Univ. Press, 46.50C
Mathematical treatment of cosmology, focusing on the formation of structure . . . Less

astrophysical than the book by Longair.

ISLAM, J.N., 2002, An Introduction to Mathematical Cosmology, Cambridge:

Cambridge Univ. Press, 42.50C
Useful summary of the facts of classical theoretical cosmology, recently revised.

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

1–5

Introduction 4

Literature

KOLB, E.W. & TURNER, M.S., 1990, The Early Universe, Reading:

Addison-Wesley, 49.90C
Graduate-level text, the section on phase transitions and inflation in the early universe is

especially recommended.

PEEBLES, P.J.E., 1993, Principles of Physical Cosmology, Princeton: Princeton

Univ. Press (antiquarian only, do not pay more than $30!)
700p introduction to modern cosmology by one of its founders, in some parts quite readable,

however, many forward references make the book very difficult to read for beginners.
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1–6

Introduction 5

Literature

2. Textbooks on General Relativity

WEINBERG, S., 1972, Gravitation and Cosmology, New York: Wiley, 129C
Classical textbook on GR, still one of the best introductions. Nice section on classical

cosmology.

SCHUTZ, B.F., 1985, A First Course in General Relativity, Cambridge:

Cambridge Univ. Press, 45.90C
Nice and modern introduction to GR. The cosmology section is very short, though.

MISNER, C.W., THORNE, K.S. & WHEELER, J.A., 1973, Gravitation, San

Francisco: Freeman, 104.90C
Commonly called “MTW”, this book is as heavy as the subject. . . Uses a weird notation. The

cosmology section is outdated.

WALD, R.M., 1984, General Relativity, Chicago: Univ. Chicago Press (only

antiquarian, ∼$40)
Modern introduction to GR for the mathematically inclined.
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History
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2–2

History 1

Prehistory

Pre-Babylonian astronomy: no written

records known

But: Observations of the sky must have

been important!

“Adorant” from the Geißenklösterle cave near Blaubeuren (Lkr. Ulm; 3.8 cm × 1.4 cm); Back side shows
marks which have been interpreted as a lunar calendar.
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2–3

History 2

Babylon

Babylonian astronomy: Earliest astronomy

with influence on us: ∼360 d year

=⇒sexagesimal system [360:60:60], 24h

day, 12×30 d year,. . .

Enuma Elish myth (∼1100BC): Universe is

place of battle between Earth and Sky, born

from world parents.

Note similar myth in the Genesis. . .

Image: Mul.Apin cuneiform tablet (British Museum,
BM 86378, 8 cm high), describes rising and setting of
constellations through the babylonian calendar.
Summarizes astronomical knowledge as of before
∼690 BC.
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2–4

History 3

Egypt

Egyptian coffin lid showing two

assistant astronomers,

2000. . . 1500 BC; hieroglyphs list

stars (“decans”) whose rise

defines the start of each hour of

the night.

(Aveni, 1993, p. 42)

∼2000 BC: 365 d calendar (12×30 d plus 5 d extra), fixed to Nile flood (heliacal

rising of Sirius), star clocks.

heliacal rising: first appearance of star in eastern sky at dawn, after it has been hidden by the Sun.
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2–5

History 4

Greek/Roman, I

Atlas Farnese, 2c A.D., Museo
Archeologico Nazionale, Napoli

Early Greek astronomy: folk tale astronomy (Hesiod

(730?–? BC), Works and Days). Constellations.

Thales (624–547 BC): Earth is flat, surrounded by

water.

Anaxagoras (500–428 BC): Earth is flat, floats in

nothingness, stars are far away, fixed on sphere

rotating around us. Lunar eclipses: due to Earth’s

shadow, Sun is hot iron sphere

Eudoxus (408–355 BC): Geocentric, planets affixed

to concentric crystalline spheres. First real model

for planetary motions!
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2–6

History 5

Greek/Roman, II

87deg

First attempts to measure scale of the universe:

Aristarch (310–230 BC): Determination of the relative distance between the

Moon and the Sun: Sun is 20× farther away than the Moon

reality: 400×
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2–7

History 6

Greek/Roman, III

Cyrene

Alexandria

Sun

Eratosthenes von

Cyrene (276–196 BC):

Measurement of the

radius of the Earth:

Distance between

Cyrene (Assuan) and

Alexandria, diameter

of Earth is

250000 stadia
The length of a stadium is
unknown =⇒ we do not know
how precise he was.
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2–8

History 7

Greek/Roman, IV

Aristotle (384–322 BC, de

caelo): Refinement of

Eudoxus model: add

spheres to ensure

smooth motion

=⇒ Universe filled with

crystalline spheres

(nature abhors

vacuum).

Ether in celestial spheres,
not on Earth (everything
falls, except for planets
and stars); Stars are very
distant since they do not
show parallaxes.

=⇒ Central philosophy until ∼1450AD!

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

2–9

History 8

Hipparcus

Hipparchus (?? – ∼127 BC): Refinement of geocentric Aristotelian model into

tool to make predictions.

• Catalogue of 850 stars

• magnitudes

• lunar parallax

• Table of “chords” (=early trigonometry)

• Discovery of precession
Difference between the durations of the siderial and the tropical year [365.25 − 1/300 d vs.
365.25 + 1/400 d], through comparison with babylonian measurements

• different duration of seasons

• conversion of geocentric model of Aristotele into a tool to make predictions.
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2–10

History 9

Ptolemy, I

(Aveni, 1993, p. 58)

Ptolemy (∼140AD): Syntaxis (aka

Almagest): Refinement of Aristotelian

theory into model useable for

computations

Foundation of astronomy until

Copernicus

=⇒ Ptolemaic System.

After Hipparcus and Ptolemy: end of

the golden age of early astronomy.

Greek works are continued by arabs

and further refined.

Aristotele’s philosophy remains

foundation of science of medieval ages

and is not questioned (in Europe).
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2–12

History 11

Renaissance

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant.
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2–12

History 12

Renaissance

(Gingerich, 1993, p. 165)

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant:

De revolutionibus orbium

coelestium: “In no other way do we

perceive the clear harmonious

linkage between the motions of the

planets and the sizes of their orbs.”
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2–12

History 13

Renaissance

(Gingerich, 1993, p. 165)

Nicolaus Copernicus (1473–1543):

Earth centred Ptolemaic system is

too complicated, a Sun-centred

system is more elegant:

De revolutionibus orbium

coelestium: “In no other way do we

perceive the clear harmonious

linkage between the motions of the

planets and the sizes of their orbs.”

Copernican principle: The Earth

is not at the center of the

universe.

The “censored” copy owned by Galileo (Gingerich, 2005, Bibl. Florenz)

(Gingerich, 2005)

The “censored” copy of Galileo’s “de revolutionibus”
Deleted: “Indeed, large is the work of . . . God”

Changed: “On the explanation of the triple motion of the Earth”

=⇒ “On the hypothesis of the triple motion of the Earth”

(Gingerich, 2005)

Distribution of the censored copies of “De revolutionibus”



(Gingerich, 1993)

The error in the Copernican position of Mercury. . .

. . . is not smaller than the error in the ptolemaic Alfonsinian Tables
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2–18

History 19

Renaissance

Tycho Brahe (1546–1601): Visual planetary

positions of highest precision reveal flaws in

Ptolemaic positions.
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2–19

History 20

Renaissance

Johannes Kepler (1571–1630):

• 27.12.1571, Weil der Stadt

• Studies in Tübingen with

Maestlin

• 1594–1600: Graz

• 1596: Mysterium

Cosmographicum

• 1600–1612: Prag, with Brahe,

court astrologer, theory of

planets, discovery of the

supernova of 1604,. . .

• 1609: Astronomia Nova
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2–20

History 21

Renaissance

Kepler’s theory of planetary

motion: Astronomia nova (Prag,

1609)

Critique of epicycles: “panis

quadragesimalis” (Osterbrezel)

=⇒ inelegant!

Astronomia Nova, chapter 1: Motion of

Mars in the theory of epicycles

Kepler’s laboratory book

Drawing of Mars in opposition

highlighted: one of the few positions of

Mars done by Brahe which Kepler was

allowed to use

(Gingerich, 1993)
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2–22

History 23

Renaissance

Tabulae Rudolphinae, 1627

Best planetary positions

(error only ∼5′!)

(Gingerich, 2005)

Comparison of positions, Kepler

vs. copernican theory

=⇒ extreme improvement!

(Gingerich, 1993)
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2–24

Galilei 1

Galileo Galilei, I

Galileo Galilei (1564–1642): Telescope

=⇒ Observations!

=⇒ Siderius Nuncius (1610)
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2–25

Galilei 2

Galileo Galilei, II

The moons of Jupiter move around Jupiter

(=⇒ similar to the heliocentric model!). . .
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2–26

Galilei 3

Galileo Galilei, III

Moon has surface features, shadows, and “wiggles” (libration!).
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2–27

Galilei 4

Galileo Galilei, IV

Discovery of the phases of Venus (Il Saggiatore, 1623)
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2–28

Galilei 5

Galileo Galilei, V

The observed sequence of the phases of Venus cannot be explained by the

geocentric theory, only by a heliocentric theory.
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2–29

Galilei 6

Newton

(Newton, 1730)

Isaac Newton (1642–1727): Newton’s

laws, physical cause for shape of orbits

is gravitation

(De Philosophiae Naturalis Principia

Mathematica, 1687).

=⇒Begin of modern physics based

astronomy.
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2–30

Galilei 7

Modern Cosmology

Galileo: Milky Way consists of stars.

Newton: Stars are distant suns

William Herschel (1738–1822): Milky Way is a

flattened disk of stars, Sun is at center (see

figure).

Immanuel Kant (1724–1804): “Nebulae are

galaxies” (disputed until the 1910s).

Friedrich Bessel (1784–1846): Distance to 61 Cyg

(1838), positions of 50000 stars

John Herschel (1792–1871): General Catalogue

of Galaxies (1864, 5079 Objects)

John Dreyer (1852–1926): NGC+IC

(15000 Objects)
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2–31

Galilei 8

Modern Cosmology

Albert Einstein (1879–1955): Theory of

gravitation, applicability of theory to evolution of

the universe as a whole.
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2–32

Edwin Hubble 1

Edwin Hubble

Christianson, 1995, p. 165

Edwin Hubble (1889–1953):

• Realization of galaxies as being

outside of the Milky Way

• Discovery that universe is expanding

Founder of modern extragalactic

astronomy

2–32

Aveni, A. F., 1993, Ancient Astronomers, (Washington, D.C.: Smithsonian Books)

Gingerich, O., 1993, The Eye of Heaven – Ptolemy, Copernicus, Kepler, (New York: American Institute of Physics)

Gingerich, O., 2005, The book nobody read, (London: arrow books)

Newton, I., 1730, Opticks, Vol. 4th, (London: William Innys), reprint: Dover Publications, 1952
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Basic Facts
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3–2

Basic Facts 1

Basic Facts

Cosmology deals with answering the questions about the universe as a whole.

The main question is:

How did the universe evolve into what it is now?

For this, four major facts need to be taken into account:

The universe is: • expanding,

• isotropic,

• and homogeneous.

The isotropy and homogeneity of the universe is called the cosmological principle.

Perhaps (for us) the most important fact is:

• The universe is habitable to humans.

i.e., the anthropic principle.

The one question cosmology does not attempt to answer is: How came the universe into being?

=⇒ Realm of theology!
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3–3

Basic Facts 2

Expansion, I

(Hubble, 1929, Fig. 1)

Hubble (1929): Velocity v

(defined as v/c := z = ∆λ/λ)

for galaxy at distance r is

v(r) = H0r + vX cosα cos δ

+ vY sinα cos δ + vZ sin δ (3.1)

(vX, vY , vZ) velocity due to motion of solar system (∼ 350 km s−1 towards l = 264◦, b = 48◦,

Bennet et al., 1996)

H0: “Hubble parameter”; intrinsic component of velocity due to

expansion of the universe.

Old usage: “Hubble constant”, but H0 6= const. (cf. Eq. (4.37)).

courtesy 2dF QSO Redshift survey

As a consequence of the cosmological redshift, for different z different parts of the

spectrum of a distant source are visible.

Wavelength

R
ed

sh
ift
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ou
rc
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3–7

Basic Facts 6

Expansion, V

1930 1940 1950 1960 1970 1980
Year

0

100

200

300

400

500

600

H
0

L

H
H
H

H
H

M

BT
B

HMS

S

McV

A
dV dV

ST
dV

(after Trimble, 1997)

Currently accepted value:

H0 ∼ 75 km s−1 Mpc−1.

The systematic uncertainty of

H0 is ∼ 10 km−1 s−1 Mpc−1.

Parameterize uncertainty in

formulae by defining

H0 = 100 km s−1 Mpc−1 · h
H0 = 75 km s−1 Mpc−1 · h75

(3.2)

Note: H−1
0 has units of time: H−1

0 = 9.78 Gyr/h: Hubble-Time;

for h = 0.75, the Hubble-Time is 13 Gyr.
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Basic Facts 7

Expansion, VI

For standard candles, i.e., objects where the

absolute luminosity L is known, the Hubble law

can be written using observed quantities only:

Euclidean space =⇒ observed flux

f =
L

4πd2
L

⇐⇒ dL =

(

L

4πf

)1/2

(3.3)

where dL is the luminosity distance.

Using the Hubble law eq. (3.1)

H0dL = cz =⇒ z ∝ H0

(

L

4πf

)1/2

(3.4)

Since magnitudes are defined via

m ∝ −2.5 log f :

log z ∝ logH0 +
1

2
(logL− log f ) =⇒ log z = a + b(m−M) (3.5)

where m−M : distance modulus.
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Basic Facts 8

Expansion, VII

v=r/2 Expansion law v = H0r is unchanged

under rotation and translation:

isomorphism.
Proof:

Rotation: Trivial.

Translation: Observations from place with

position r
′ and velocity v

′: Observed

distance is ro = r − r
′, observed velocity

is vo = v − v
′. Because of the Hubble law,

vo = H0r −H0r
′ = H0 (r − r

′) = H0ro

This isomorphism is a direct

consequence of the homogeneity of

the universe.

Despite everything receding from us, we are not at the center of the

universe =⇒ Copernicus principle still holds.
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Basic Facts 9

Homogeneity and Isotropy, I

after Silk (1997, p. 8).

Note that homogeneity does not imply isotropy!
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Basic Facts 10

Homogeneity and Isotropy, II

Neither does isotropy around one point imply homogeneity!

=⇒ Both assumptions need to be tested.
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Basic Facts 11

Homogeneity, I

2dF Survey, ∼220000 galaxies total

The universe is homogeneous ⇐⇒ The universe looks the same everywhere in

space

Testable by observing spatial distribution of galaxies.

2dF Survey, ∼220000 galaxies total

On scales ≫100 Mpc the universe looks indeed the same.

Below that: structure.
Structures seen are galaxy clusters (gravitationally bound) and superclusters (larger structures, not [yet]

gravitationally bound).

(Jarrett, 2004, Fig. 1)

Distribution of Galaxy redshifts in the 2MASS galaxy catalogue
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Basic Facts 14

Isotropy

The universe is isotropic

⇐⇒ The universe looks the

same in all directions

Radio galaxies are mainly

quasars

=⇒Sample large space

volume (z & 1)

=⇒ Clear isotropy.

Peebles (1993): Distribution of

31000 objects at λ =6 cm from

the Greenbank Catalogue.

Anisotropy in the image: galactic
plane, exclusion region around Cyg A,
Cas A, and the north celestial pole.
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Basic Facts 15

Isotropy

Best evidence for isotropy: Intensity of

3 K Cosmic Microwave Background

(CMB) radiation.

First: dipole anisotropy due to motion of Sun

(see slide 3–3), after subtraction: ∆T/T . 10−4

on scales from 10′′ to 180◦.

At level of 10−5: structure in CMB due to structure of
surface of last scattering of the CMB photons, i.e.,
structure at the time when Hydrogen recombined.

3–16
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World Models



I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–2

Introduction 1

Structure

Observations: cosmological principle holds: The universe is homogeneous and

isotropic.

=⇒Need theoretical framework obeying the cosmological principle.

Use combination of
• General Relativity

• Thermodynamics

• Quantum Mechanics
=⇒ Complicated!

For 99% of the work, the above points can be dealt with separately:
1. Define metric obeying cosmological principle.

2. Obtain equation for evolution of universe using Einstein field equations.

3. Use thermo/QM to obtain equation of state.

4. Solve equations.
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FRW Metric 1

GRT vs. Newton

Before we can start to think about universe: Brief introduction to assumptions of

general relativity.

=⇒ See theory lectures for the gory details, or check with the literature (Weinberg or MTW).

Assumptions of GRT:

• Space is 4-dimensional, might be curved

• Matter (=Energy) modifies space (Einstein field equation).

• Covariance: physical laws must be formulated in a coordinate-system

independent way.

• Strong equivalence principle: There is no experiment by which one can

distinguish between free falling coordinate systems and inertial systems.

• At each point, space is locally Minkowski (i.e., locally, SRT holds).

=⇒Understanding of geometry of space necessary to understand physics.
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FRW Metric 2

2D Metrics

Before describing the 4D geometry of the universe: first look at 2D spaces

(easier to visualize).

After Silk (1997, p. 107)

There are three classes of isotropic and homogeneous two-dimensional spaces:
• 2-sphere (S 2) positively curved

• x-y-plane (R2) zero curvature

• hyperbolic plane (H 2) negatively curved
(curvature ≈ ∑

angles in triangle >, =, or < 180◦)

We will now calculate what the metric for these spaces looks like.
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FRW Metric 3

2D Metrics

The metric describes the local geometry of a space.

Differential distance, ds, in Euclidean space, R2:

ds2 = dx2
1 + dx2

2 (4.1)

The metric tensor, gµν, is defined through

ds2 =
∑

µ

∑

ν

gµν dxµ dxν =: gµν dxµ dxν (4.2)

(Einstein’s summation convention)

Thus, for the R2,

g11 = 1 g12 = 0

g21 = 0 g22 = 1
(4.3)
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FRW Metric 4

2D Metrics

But: Other coordinate-systems are also possible in the plane!

Changing to polar coordinates r′, θ, defined by

r´d

dθ
θ

θ
ds

dr´

x2

x 1

r´

x1 =: r′ cos θ

x2 =: r′ sin θ
(4.4)

it is easy to see that

ds2 = dr′
2
+ r′

2
dθ2 (4.5)

Performing a change of scale by

substituting r′ = Rr, then gives

ds2 = R{dr2 + r2 dθ2} (4.6)
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FRW Metric 5

2D Metrics

A more complicated case occurs if space is curved.

Easiest case: surface of three-dimensional sphere (a two-sphere).

x3

θ x2

R

x1

θ r´

φ

After Kolb & Turner (1990, Fig. 2.1)

Two-sphere with radius R in R3:

x2
1 + x2

2 + x2
3 = R2 (4.7)

Length element of R3:

ds2 = dx2
1 + dx2

2 + dx2
3

Eq. (4.7) gives

x3 =
√

R2 − x2
1 − x2

2

such that

dx3 =
∂x3

∂x1
dx1 +

∂x3

∂x2
dx2

= −x1 dx1 + x2 dx2
√

R2 − x2
1 − x2

2

(4.8)
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FRW Metric 6

2D Metrics

Introduce again polar coordinates r′, θ in x3-plane:

x1 =: r′ cos θx2 =: r′ sin θ (4.4)

(note: r′, θ are only unique in upper or lower half-sphere)

The differentials are given by

dx1 = cos θ dr′ − r′ sin θ dθ and dx2 = sin θ dr′ + r′ cos θ dθ (4.9)

In cartesian coordinates, the length element on S
2 is

ds2 = dx2
1 + dx2

2 +
(x1 dx1 + x2 dx2)

2

R2 − x2
1 − x2

2

(4.10)

inserting eq. (4.9) gives after some algebra

= r′
2

dθ2 +
R2

R2 − r′2
dr′

2
(4.11)

finally, defining r = r′/R (i.e., 0 ≤ r ≤ 1) results in

ds2= R2

{

dr2

1 − r2
+ r2 dθ2

}

(4.12)
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FRW Metric 7

2D Metrics

Alternatively, we can work in spherical coordinates on S 2

x1 = R sin θ cosφ

x2 = R sin θ sinφ

x3 = R cos θ

(4.13)

(θ ∈ [0, π], φ ∈ [0, 2π]).

Going through the same steps as before, we obtain after some tedious algebra

ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)
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FRW Metric 8

2D Metrics

(Important) remarks:

1. The 2-sphere has no edges, has no boundaries, but has still a finite volume,

V = 4πR2.

2. Expansion or contraction of sphere caused by variation of R =⇒ R

determines the scale of volumes and distances on S 2.

R is called the scale factor

3. Positions on S 2 are defined, e.g., by r and θ, independent on the value of R

r and θ are called comoving coordinates

4. Although the metrics Eq. (4.10), (4.12), and (4.14) look very different, they

still describe the same space =⇒ that’s why physics should be covariant, i.e.,

independent of the coordinate system!
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FRW Metric 9

2D Metrics

The hyperbolic plane, H 2, is defined by

x2
1 + x2

2 − x2
3 = −R2 (4.15)

If we work in Minkowski space, where

ds2 = dx2
1 + dx2

2 − dx2
3 (4.16)

then

= dx2
1 + dx2

2 −
(x1 dx1 + x2 dx2)

2

R2 + x2
1 + x2

2

(4.17)

=⇒substitute R → iR (where i =
√
−1) to obtain same form as for sphere

(eq. 4.11)!

Therefore,

ds2 = R2

{

dr2

1 + r2
+ r2 dθ2

}

(4.18)
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FRW Metric 10

2D Metrics

The analogy to spherical coordinates on the hyperbolic plane are given by

x1 = R sinh θ cosφ

x2 = R sinh θ sinφ

x3 = R cosh θ

(4.19)

(θ ∈ [−∞,+∞], φ ∈ [0, 2π]).

A session with Maple (see handout) will convince you that these coordinates give

ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

Remark:

H 2 is unbound and has an infinite volume.

4–12

Transcript of Maple session to obtain Eq. (4.20):
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FRW Metric 11

2D Metrics

To summarize:

Sphere: ds2 = R2

{

dr2

1 − r2
+ r2 dθ2

}

(4.12)

Plane: ds2 = R2
{

dr2 + r2 dθ2
}

(4.6)

Hyperbolic Plane: ds2 = R2

{

dr2

1 + r2
+ r2 dθ2

}

(4.18)

=⇒ All three metrics can be written as

ds2 = R2

{

dr2

1 − k r2
+ r2 dθ2

}

(4.21)

where k defines the geometry:

k =



















+1 spherical

0 planar

−1 hyperbolic

(4.22)

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–14

FRW Metric 12

2D Metrics

For “spherical coordinates” we found:

Sphere: ds2 = R2
{

dθ2 + sin2 θ dφ2
}

(4.14)

Plane: ds2 = R2
{

dθ2 + θ2dφ2
}

(4.6)

Hyperbolic Plane: ds2 = R2
{

dθ2 + sinh2 θ dφ2
}

(4.20)

=⇒ All three metrics can be written as

ds2 = R2
{

dθ2 + S2
k(θ) dφ2

}

(4.23)

where

Sk(θ) =



















sin θ for k = +1

θ for k = 0

sinh θ for k = −1

and Ck(θ) =
√

1 − kS2
k(θ) =



















cos θ for k = +1

1 for k = 0

cosh θ for k = −1

(4.24)

The cos-like analogue of Sk, Ck, will be needed later

Note that, compared to the earlier formulae, some coordinates have been renamed. This is confusing, but
legal. . .
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FRW Metric 13

RW Metric

• Cosmological principle + expansion =⇒ ∃ freely expanding cosmical coordinate system.

– Observers =: fundamental observers

– Time =: cosmic time

This is the coordinate system in which the 3K radiation is isotropic, clocks can be synchronized, e.g., by
adjusting time to the local density of the universe.

=⇒ Metric has temporal and spatial part.

This also follows directly from the equivalence principle.

• Homogeneity and isotropy =⇒ spatial part is spherically symmetric:

dψ2 := dθ2 + sin2 θ dφ2 (4.25)

• Expansion: ∃ scale factor, R(t) =⇒ measure distances using comoving coordinates.

=⇒ metric looks like

ds2 = c2 dt2 −R2(t)
[

f 2(r) dr2 + g2(r) dψ2
]

(4.26)

where f (r) and g(r) are arbitrary.
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FRW Metric 14

RW Metric

Metrics of the form of eq. (4.26) are called Robertson-Walker (RW) metrics

(introduced in 1935).

Previously studied by Friedmann and Lemaître. . .

One common choice is

ds2 = c2 dt2 −R2(t)
[

dr2 + S2
k(r) dψ2

]

(4.27)

where

R(t): scale factor, containing the physics

t: cosmic time

r, θ, φ: comoving coordinates

Sk(r) was defined in Eq. (4.24).

Remark: θ and φ describe directions on sky, as seen from the arbitrary center of

the coordinate system (=us), r can be interpreted as a radial coordinate.
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FRW Metric 15

RW Metric

The RW metric defines an universal coordinate system tied to expansion of

space:

B(x2,y2)

A(x1,y1)

d R(t1)

A(x1,y1)

B(x2,y2)

d R(t2)
. .

Scale factor R(t) describes evolution of universe.

• d is called the comoving distance.

• D(t) := d · R(t) is called the proper distance,

(note that R is unitless, i.e., d and d ·R(t) are measured in Mpc)
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FRW Metric 16

RW Metric

Other forms of the RW metric are also used:

1. Substitution Sk(r) −→ r gives

ds2 = c2 dt2 −R2(t)

{

dr2

1 − kr2
+ r2 dψ2

}

(4.28)

(i.e., other definition of comoving radius r).

2. A metric with a dimensionless scale factor,

a(t) :=
R(t)

R(t0)
=
R(t)

R0
(4.29)

(where t0=today, i.e., a(t0) = 1), gives

ds2 = c2 dt2 − a2(t)

{

dr2 +
S2
k(R0r)

R2
0

dψ2

}

(4.30)
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FRW Metric 17

RW Metric

3. Using a(t) and the substitution Sk(r) −→ r is also possible:

ds2 = c2 dt2 − a2(t)

{

dr2

1 − k · (R0r)2
+ r2 dψ2

}

(4.31)

The units of R0r are Mpc =⇒ Used for observations!

4. Replace cosmic time, t, by conformal time, dη = dt/R(t)

=⇒ conformal metric,

ds2 = R2(η)

{

dη2 − dr2

1 − kr
− r2 dψ2

}

(4.32)

Theoretical importance of this metric: For k = 0, i.e., a flat space, the RW

metric = Minkowski line element × R2(η) =⇒ Equivalence principle!
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RW Metric

5. Finally, the metric can also be written in the isotropic form,

ds2 = c2dt2 − R(t)

1 + (k/4)r2

{

dr2 + r2dψ2
}

(4.33)

Here, the term in {. . .} is just the line element of a 3d-sphere =⇒ isotropy!

Note: There are as many notations as authors, e.g., some use a(t) where we

use R(t), etc. =⇒ Be careful!

Note 2: Local homogeneity and isotropy (i.e., within a Hubble radius, r = c/H0),

do not imply global homogeneity and isotropy =⇒ Cosmologies with a non-trivial

topology are possible (e.g., also with more dimensions. . . ).


