~ Hubble's Law]

Hubble’s Law follows from the variation of R(¢):
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Small scales = Euclidean geometry. Then the proper distance between two observers is:
D(t)y=d- R(t) (4.34)
where d: comoving distance.
Expansion = proper separation changes:
AD  R(t+At)d — R(t)d dD . R
—:M = lim = v=—=Rd=—=-D=HD (4.35)
At At Al—0 dt R
= ldentify local Hubble “constant” as
H= % =a(t) (a(t)from Eq.E29, a(today) = 1) (4.36)
\_Since It = R(t) => H is time-dependent! )
Observational Quantities 1

The cosmological redshift is a consequence of the expansion of the universe:

The comoving distance is constant, thus in terms of the proper distance:
D(t =today) D(t)
d=———"—<=——=<=const. 4.37
Rt —today) _ R(t) (4-37)

Set a(t) = R(t)/R(t = today), then eq. @37) implies

Ao
Aobs = —== (4.38)
emit
(Aobs: Observed wavelength, Aemie: emitted wavelength)
Thus the observed redshift is
o Dobs ZAemit  Aobs g Vemt (4.39)
Aemit Aemit Vobs
1 R(t = toda ;
— 14z L _Blt=today)  vem (4.40)
Aemit R(t) Vobs

Light emitted at = = 1 was emitted when the universe was half as big as today!

e Redshift, | | N

\z: measure for relative size of universe at time the observed light was emitted. )

Observational Quantities 2

Note that the definition of H allows us to derive Hubble's relation for the case of small v, i.e., v < c. In this case, the red-shift is

v _Hd

z=- = z
c

(4.41)

An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic GR fact that for photons ds? = 0. Inserting this into the metric,
and assuming without loss of generality that di/?> = 0, one finds

- dt
0= d? — R(t) dr® — dr =+~ 4.42
‘ (t) ar =t (a.42)
Since photons travel forward, we choose the +-sign.
/" \
[\
/ \
/ \ tobs+A to
tobs \\‘ /
\ /
\ /
\ ’,/'
The comoving distance traveled by photons emitted at cosmic times temis and temit + Ate is
tovs ¢ dt and /’“},\4’370 cdt (4.43)
= Ty r2 = Y i}
Stenss (D) e+t B()
4-22
But the comoving distances are equal, 1y = 1! Therefore
tos Ao gt (a1)
san R(1) ’
- dt /mmm“ cdt (45)
fobs R(t) )
If At small = R(t) ~ const.:
¢ Aty ¢ At,
- (4.46)
Rtemit) ~ Rltobs)
For a wave: cAt = ), such that
Aemit Aobs Aemit _ Rltemit)
= — Jomt (4.47)
Rtemit)  Rtabs) Aobs  R(tobs)

From this equation it is straightforward to derive Eq. @39).



s Redshift, Il ~N e [Friedmann Equations, I} ~N

Outside of the local universe: Eq. (4.40) only valid interpretation of z. General relativistic approach: Insert metric into Einstein equation to obtain
differential equation for R(t):

= It is common to interpret z as in special relativity:
Einstein equation:

— 1 8rG
1 + 2z = A i _* S U/C (448) RN'V - E%glu/ = —C4 7—‘“” + Agulj (450)
V 1-— U/C N——

G;w

Redshift is due to expansion of space, not due to motion of galaxy. where

. H 2 _
What is true is that z is accumulation of many infinitesimal red-shifts a la Eq. (£.41), see, e.g., Peacock Guv- Metric tensor (dS = G da’ dxy)
(1999). R, Ricci tensor (function of g,,,)

Z: Ricci scalar (function of Guw)
G,.: Einstein tensor (function of g,,)

T, Stress-energy tensor, describing curvature of space due to fields present
(matter, radiation,. . .)

A: Cosmological constant

\§ Y, \_—Messy, but doable )
Observational Quantities 3 Dynamics 1
e  Time Dilatation] ~N s \Friedmann Equations, |1} ~N
For light, D =c At. Then a consequence of Eq. @,:32[) is m Here, Newtonian derivation of Friedmann equations: Dynamics

f a mass element on the surface of sphere of density p(¢) and
¢ Atemp ¢ At dt °
emit — obs — = const. @49 comoving radius d, i.e., proper radius d - R(t) (McCrea, 1937)
R<temit) R(tobs) R Mass of sphere:
In other words: ar ar
dlobs  Rltons) L (.49 M = (AR plt) = S dpo where pt) = Pj:)"’ (4.51)
dfemt  R(temit) Force on mass element:
d? GMm 4G dpo
— Time dilatation of events at large z. m@(d R(t)) = “WReE . 3 " (4.52)
This cosmological time dilatation has been observed in the light curves of supernova outbursts. Canceling m - d gives momentum equation:
; PR . 4rG 41G
All other observables apart from z (e.g., number density N(z), luminosity B(t) = — G po N T A(OR() 4.53)
distance dy, etc.) require explicit knowledge of R(t) 3 R() E
— Need to look at the dynamics of the universe. Multiplying Eq. @53) with 12 and integrating yields the energy equation:
il 4 4
ER(t)2 = +WTG% + const. = +%Gp(t)R2(t) + const. (4.54)
\ ) \where the constant can only be obtained from GR. )

Observational Quantities 4 Dynamics 2



e \Friedmann Equations, I1If

Problems with the Newtonian derivation:

1. Cloud is implicitly assumed to have 7¢oug < 00

(for rgouqa — 00 the force is undefined)
= violates cosmological principle.

2. Particles move through space
= v > cpossible
— violates SRT.

Why do we get correct result?

GRT — Newton for small scales and mass densities
Since universe is isotropic: scale invariance on Mpc scales
—> Newton sufficient (classical limit of GR).

\(In fact, point 1 above does hold in GR: Birkhoff’s theorem).

Dynamics

e IFriedmann Equations, IV|

The exact GR derivation of Friedmanns equation gives:
.. arG 3p 1
R————R = -AR
3 (’0 " cZ) N {3 }
. e 1
R=+2Pp2 4 {7/\02]%2]
3 3
Notes:

1. For k = 0: Eq. @.55) — Eq. @54).

2. k determines the curvature of space (and is not an integer here!).

mass-energy equivalence!).

The evolution of the Hubble parameter is (A = 0):

S\
R\" ., . 8rGp k&
(%) -2t

-

3. The density, p, includes the contribution of all different kinds of energy (remember

4. There is energy associated with the vacuum, parameterized by the parameter A.

(4.55)

(4.56)

Dynamics

e 'The Critical Density, I}

Solving Eq. (4.586) for k:
2
R* <87er_ H2> o
c 3

2
= sH and Q=

Pe=8rG De

pe is called the critical density

For (2 < 1 the universe will expand until oo,
For 2 > 1 we will see the “big crunch”.

Current value of p.: ~ 1.67 x 10" gem~2 (3... 10 H-atoms m~3).

-

= Sign of curvature parameter k only depends on density, p. With

0>1 = k>0 = closed universe
itiseasytoseethat: =1 — k=0 = flat universe
(<1 = k <0 = open universe

(4.57)

(4.58)

Dynamics

e 'The Critical Density, |1}

() has a second order effect on the expansion:
Taylor series of R(t) around ¢ = ty:

R(t) _ R(to) Rlto) 1 R(to)
Rito) ~ R(to) ' Blto) """ 2 Rito
The Friedmann equation Eq. (£53) can be written
k__aG 4G 3 o
R 3 3 8rG 2
Since H(t) = R/R (Eq.%.386), Eq. @59) is
R(t)
R(to)
where Hy = H(to) and Qo = Q(to).

(t —t)?

10
:1+Ho(t7to)75?°H§(t7to)2

The subscript 0 is often omitted in the case of 2.
Often, Eq. (@.61)) is written using the deceleration parameter:
Q  R(to)R(to)
q == —_——= =

\_ 2 R2(to)

(4.59)

(4.60)

(4.61)

(4.62)

Dynamics




e IEquation of state, I} ~N

Evolution of the universe determined by three different kinds of equation of state:

1. Matter: Normal (nonrelativistic) particles get diluted by expansion of the
universe:
pm X RT3 (4.63)

Matter is also often called dust by cosmologists.
2. Radiation: The energy density of radiation decreases because of volume
expansion and because of the cosmological redshift (Eq. 447
)\obs/)\emit = Vemit/Vobs = R(tobs)/R<temit)) such that
prox R4 (4.64)
3. Vacuum: The vacuum energy density (=A) is independent of R:
Py = const. (4.65)

Inserting these equations of state into the Friedmann equation and solving with the boundary
condition R(t = 0) = 0 then gives a specific world model.

e |k = 0, Matter dominated] ~N

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is
j 871G poRR3

J
Dynamics 7
e IEquation of state, 11} ~N
Current scale factor is determined by Hy and (2q:
Friedmann for ¢ = to:
. 8rG
R — TpRg = —kc? (4.66)
Insert 2 and note Hy = Ro/ Ry
< H{R;— H{QoR; = —kc? (4.67)
And therefore
c k
Ry=—4/—— 4.68
=\ a—1 (4.68)
For 2 — 0, Ry — ¢/ H,, the Hubble length.
For Q = 1, Ry is arbitrary.
We now have everything we need to solve the Friedmann equation and
determine the evolution of the universe for £ = 0, +1, and —1. )

.

Dynamics 8

R*=0 (4.69)
3 R
Fork =0:Q =1and 8
T Po
S0 00 H2RE = HERE (4.70)
3
Therefore, the Friedmann eq. is
: HZRS dRr 3/2
R olto _ g s = = HoRY*RY2 (4.71)
R dt
Separation of variables and setting R(0) = 0,
R(t) P 3H. \2/3
3/2 3/2 0
RY2dR = HoRY* = ZR%2(t)= HyRY* = R(t)=Ro( =2t
0 0 3 0 2
(4.72)
Therefore, for k = 0, the universe expands until oo, its current age (R(to) = Ro) is given by
t 2 (4.73)
lo = .
3H,
Reminder: The Hubble-Time is Hy * = 9.78 Gyr/h.
Dynamics 9
4-33
For the matter dominated, closed case, Friedmanns equation is
-2 871G poRRS _ 2 - HER3 2
R—TTf—n — R—Tf—c (4.74)
Inserting R, from Eq. @EB) gives
2 HiQ 1,
= e ¢ (4.75)
which is equivalent to
dR _ (e \Y2 o e 0
Efr(ﬁ—l) with 57?" m (4.76)
With the boundary condition 2(0) = 0, separation of variables gives
RO dR "0 VRdR
| @k “n
Integration by substitution gives the “cycloid solution”
R :{shlzg = g(l —cosf) and ct = g(ﬁ —sind) (4.78)
where € is an implicit parameter.
The age of the universe, to, is obtained by solving
¢ ¢ ) 1 Q =
I(o:mzi(l—wsﬂo):imW\l—m\ o) (4.79)
(remember Eq. ZER). Therefore i
cos o = 2-% = sinfp = i‘/xzu —1 (4.80)
Q Q
Inserting this into Eq. @78) gives
_ 1 Q (2= 2 —
to= THO W {arccob( o > QD«/QO 1] (4.81)



The cycloid solution shows that for 2 > 1, the universe has a finite lifetime, i.e., it expands to a maximum and then becomes smaller and dies in a “big crunch”. The max.
expansion occurs at @ = , with a maximum scale factor of
c Qo

-

B =€ = (1072 (4.82)
The big crunch will happen at # = 27, such that the lifetime of the closed universe is
T Qo
tife = A m (4.83)
[ . 1
e |k = +1, Matter dominated, |f ~N
=
x !
=
= ! For the closed universe,
@ : one finds
| € -
R =2(1—cosb)
| 2 @)
‘ ct = é(t‘)—sin&)
\ 2
-20 0 20 40 60 Note that R is a cyclic
t-t, (arbitrary units) function
= The closed universe has a finite lifetime, given by
T Qo
tign = — ——— @383
life Ho <SZO — 1)3/2

Dynamics 10

e 'k = +1, Matter dominated, |1}

6.5]

6.0~ 5

5.5 5

t,/h [Gyr]

5.0+ 5

4.5 L L L L L 1 L L L L 1 L L L L 1 L L L L 1 L n n n 1 n n n n \7
15 2.0 2.5 3.0 3.5 4.0
Q
\Age of a closed and matter dominated universe.
Dynamics 11
e 'k = —1, Matter dominated, ||
Finally, the matter dominated, open case. This case is very similar to the case of £ = +1:
For k = —1, the Friedmann equation becomes
dR ¢ A\
— =c(=2+1 4.84
4 c (R + > (4.84)
where Q
c 0
=— — 4.85
¢ Hy (1 — Q)32 (4.85)
Separation of variables gives after a little bit of algebra
R = g(cosh0 —1)
2 (4.86)

c = g (sinh @ — 1)
where the integration was again performed by substitution.

Note: @ here has nothing to do with the coordinate angle !

\

Dynamics

12




e 'k = —1, Matter dominated, Il} ~N

10¢

To obtain the age of the
universe, note that at the
present time,

t/h [Gyr]
o0}

2 - O
7 cosh By = o
sinh 0y = %\/1—7_(20
6 s s s s (4.87)
0.2 0.4 0.6 0.8 (identical derivation as that
Q leading to Eq. &.79)
therefore,

L% {im_—szo_m <—2Q°+2V190>} @s8)

ty = — .
7 2H, (1—Q0)32 | Qo

\- J

Dynamics 13

e Summaryi N

For the matter dominated case, our results from Eqs. @.78), and (£.86) can be written with the
functions S, and C. (Eq. 424 in form of the cycloid solution:

R=k%(1— Cy0))

4.89
ct = k% (0 — Si(0)) (4.89)
with
sin 6 cosf fork=+1
Sp(@) =<0 and Cip(0) =<1 fork= 0 @23
sinh 0 cosh@ fork=—1
and where the characteristic radius, Z, is given by
Q0/2
7= < o/ . (4.90)
Ho (k (2 — 1))°
Notes:

1. Eq. (8.89) can also be derived as the result of the Newtonian collapse/expansion of a
spherical mass distribution.

2. 6 is called the development angle, it is equal to the conformal time (Eq. (£.32)).

Dynamics 14

10.0

R)/R

1.0

0.1
0.0

ct/2mR

4-39

McCrea, W. H., & Milne, E. A., 1934, Quart. J. Math. (Oxford Series), 5, 73

Silk, J., 1997, A Short History of the Universe, Scientific American Library 53, (New York: W. H. Freeman)



Classical Cosmology

- Classical Cosmology|

To understand what universe we live in, we need to determine observationally
the following numbers:

1. The Hubble constant, Hy
—> Requires distance measurements.

2. The current density parameter, (g
— Requires measurement of the mass density.

3. The cosmological constant, A
—> Requires acceleration measurements.

4. The age of the universe, tg, for consistency checks
—> Requires age measurements.

| The determination of these numbers is the realm of classical cosmology. |

\First part: Distance determination and Hj!

~

e Introduction, | i

Distances are required for determination of H.
—> Need to measure distances out to ~200 Mpc to obtain reliable values.

To get this far: cosmological distance ladder.

[uny

. Trigonometric Parallax and Moving Cluster
. Main Sequence Fitting

. RR Lyr

. Baade-Wesselink

. Cepheids

. (Light echos)

. Brightest Stars

. Type la Supernovae

. Tully-Fisher

. D,,-o for ellipticals

. Brightest Cluster Galaxies
12. Gravitational Lenses

© 00N O~ wWwN

P
» o

Still the best reference on this subject is ROWAN-ROBINSON, M., 1985, The Cosmological

Classical Cosmology

Distance Ladder, New York: Freeman.

-

Distance Determination

H /Galaxy Luminosity Function |

A A A A
D-Sigma Relation
Tully-Fisher "| SN la |

1

| PNLF ” SBF | | GOLF ” Novael

10 Mpc ) |,
LSC Cepheids a| Redsa A A A A

Stars

1 Mpc | Local Group Cepheids | ¢ N |
A
SN
| LMC/SMC Cepheids |<' 1987 A
A

A

y

10 k

0 kpe | Glob. Cluster RR Lyr |
Y

LSC

Local Group RR Lyr

LG

100 kpc

>

g | Cluster Cepheids | RR Lyr Stat. Parall. A

> 1kpc

=

=

Pleiades
100 pc * *
Subdwarf Parallax
Parallax
(after bacaby et all, 1992, Fig. 1)



Basic unit of length in astronomy: Astronomical Unit (AU).
Colloquial Definition: 1 AU = mean distance Earth—Sun.

Measurement: (Venus) radar ranging, interplanetary satellite positions,
% minimization of N-body simulations of solar system

H 1AU ~ 149.6 x 10km H

In the astronomical system of units (IAU 1976), the AU is defined via Gaussian gravitational
constant (k), where the acceleration
(14 m)r
7«3
where k := 0.01720209895, leading to ax = 1.00000105726665, and
1 AU=1.4959787066 x 10*' m (Seidelmann, 1992).

= —

Reason for this definition: & much better known than G.

~ Units ™\

\(2006 CODATA: G = 6.67428(67) x 10 1t m®kg~*s72, so only known to 4 significant digits) )

Distance Determination 3

e  Trigonometric Parallax, I}

Tisin b
T

e ' Trigonometric Parallax, |1} ~

Best measurements to date: Hipparcos satellite (1989-1993)

* systematic error of position: ~0.5mas for stars brighter 9 mag
« effective distance limit: 1 kpc

e standard error of proper motion: ~1 masyr—
* broad band photometry

e parrow band: B —V,V —J

* magnitude limit: 12 mag

e complete to mag: 7.3-9.0

1

Results available at
http://www.rssd.esa.int/index.php?project=HIPPARCOS

Hipparcos catalogue: 118218 objects with milliarcsecond precision.

Tycho catalogue: 2539913 stars with 20—30 mas precision, two-band
photometry (99% complete down to 11 mag)

\Revised Hipparcos calibration: see van | eeuwen (2007). )

Geometric Methods 2

GAIA (ESA mission, to be launched 2011 Dec on Soyuz from Kourou):

1000 million
measured tol =20

after Rowan-Robinson (1985, Fig. 2.1)

-

Motion of Earth around Sun = Parallax
produces apparent motion by amount

tanm ~m=1s/d (5.1)
7 is called the trigopnometric parallax, and

not 3.141!

If star is at ecliptic latitude b, then ellipse with
axes m and 7 sin b.

Measurement difficult: = < 0.76” («Cen).
Define unit for distance:

Parsec: Distance where 1 AU has
m =1". 1pc = 206265 AU =
3.08 x 108 cm = 3.26ly

Geometric Methods

//>20 globular clusters
Many thousands of Cepheids and RR Lyrae

/

Mass of galaxy from 30 open clusters
rotation curve at 15 kpc Sun within 500 pc

o

Horizon for detection of
Jupiter mass.planets (200 pc)

GAIA: ~ 4parcsec precision, 4 color to V' = 20 mag, 10° objects.

Horizon for proper motions -
accurate to 1 km/s

Dark matter in disc measured
- from distances/motions of K giants

Dynamics of disc, . |
spiral arms, and bulge

Horizon for distances
accurate to 10 per cent

1 microarcsec/yr = 300 km/s at z = 0.03
(direct connection to inertial)
/

/



http://www.rssd.esa.int/index.php?project=HIPPARCOS

arcsec ' '
1000 L ® Hipparchus - 1000 stars N
@ Thelandgrave of Hessen - 1000
100 - . Tycho Brahe - 1000 7]
10 L . Flamsteed - 4000 i
g . Avgelander - 26000 )
. @PPM-400 000
01 | .9 FK5 - 1500 -
Bl e UGAC2 - 58 million

0.01 Jenkins - 6000, o | Tycho -1 million
0.001 - USNO - 100 ©® Hipparcos - 120 000-
0.0001 Errors of =

best star positions e
0.00001 and parallaxes o ®Gaia - 1000 million—
—_— | | | | |
150 BC 1600 1800 2000

Year

ESA/M. Perryman
Development of the precision of astronomical position measurements

© Till Credner

50 mas fyr l
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o
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=
0
-4
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o
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w

40
o (°, ICRS, J1991.25)

Source: ESA

s IMoving Cluster] ~
Perspective effect of spatial motion towards convergent
point:

) d
tan A = U _ BE (5.2)
v
or
d _ vp/(1km/s) tan A (5.3)
1pc 4.74 /(1" /a)
Problem: determination of convergent point
Less error prone: moving cluster method = rate of
variation of angular diameter of cluster:
fd = B, (5.4)
SU n Observation of proper motions gives
9 d/l(\ d/‘()’
- = 5.5
0 da do )
where i, 5 proper motion in o and 0. Therefore, from Eq. (5.4),
9
\_ d= v, ] (5.6) )

Geometric Methods 7



e IMoving Cluster]

50 mas Iyr

o
I
&
@
"]
14
o
e

Application: Distance to Hyades.
Tip of “arrow”: Position of stars in
100000 years.

Hanson (@) finds from this a
distance of 46 pc

However: Hipparcos: geometric
distance to Hyades is

d = 46.34 £+ 0.27 pc from parallax
measurements.

= Moving cluster method only of

) historic interest.

@ (%, ICRS, J1991.25)

\Source: ESA

Geometric Methods

e Interlude]

Parallax and Moving Cluster: geometrical methods.

All other methods (exception: light echoes): standard candles.

Requirements for standard candles deIdAenanEwedmad bODd):

1. Physical basis should be understood.

2. Parameters should be measurable objectively.
3. No corrections (“fudges”) required.
4. Small intrinsic scatter (= requiring small number of measurements!).

5. Wide dynamic range in distance.

-

p Magnitudes} ~N

Assuming isotropic emission, distance and luminosity are related (“inverse
square law”) = luminosity distance:

_ L (5.7)
B 47Tdf '
where F is the measured flux (ergcm—2s ) and L the luminosity (ergs™).
Definition also true for flux densities, 7, (ergecm2s~ 1 A1),
The magnitude is defined by
m=A—25log, F (5.8)

where A is a constant used to define the zero point (defined by m = 0 mag for
Vega).

For a filter with transmission function ¢,,,

m; = A; — 2.5log / ¢, F, dv (5.9)
\where, eg.,:=U,B,V. j
Interlude 2
T PR P |
s Magnitudesy| N\

To enable comparison of luminosities: define

H absolute magnitude M = magnitude at distance 10 pc H

Thus, since m = A — 2.5log(L/4md?),

d
M =m —5log L (5.10)
10 pc
The difference m — M is called the distance modulus, o:
DM M =51 do (5.11)
= =m— M =5lo .
Ho g 10pc

Often, distances are given in terms of m — M, and not in pc.

DM[mag] 3 | 5 |10 | 15 | 20 | 25 | 30 |
| d  |40pc|100pc|1kpc|10kpc| 100kpc|1Mpc|10Mpc|

Interlude

- J

Interlude 3




e 'Main Sequence Fitting, 1} ~N
T I I )] I I
—Gp—* - Pleiades -
| x NGC 2382 =
e ‘; gizgjgé% | All open clusters are
- e e - comparably young
I, 1 % - == Hertzsprung Russell
b x‘x.-x_ i Diagram (HRD)
= L 4 | dominated by Zero Age
+3H = Main Sequence (ZAMS).
B | == Measure HRD (or Color
+5: : Magnitude Diagram;
47 - CMD), shift magnitude
B'o A[o F'O G'o K'O K's scale until main
Spectral type sequence aligns

after Rowan-Robinson (1985, Fig. 2.11)

—> distance modulus.

\_ J
Standard Candles: Galactic Distances 1
e 'Main Sequence Fitting, 11} ~N

0.2— Caveats:

a = 1. Location of ZAMS more age dependent

101+ than expected (van Leeuwen, 1999).
3 | 2. interstellar extinction
"00 ol = g = py — Ay, where py, Ay

' DM/extinction measured in V-band.
| | | | 3. metals: line blanketing (change in stellar
-0.1

0.5 00 -05

life).

continuum due to metal absorption

-1.0 -15 -20 lines, see figure)

[Fe/H] = Changes color
(after Rowan-Rohinson, 11985, Fig. 2.12)

= horizontal shift in CMD.

van den Bergh (1977): Zyades ~ 1.6Z, while other open clusters have solar metallicity = Cepheid DM
were overestimated by 0.15 mag.

4. identification of unevolved stars crucial (evolution to larger magnitudes on MS during stellar

\Currently: distances to ~200 open clusters known (Eenkart & Binggeli, 1979), limit ~7 kpc. j

Standard Candles: Galactic Distances 2

Globular Cluster NGC 6712

ESO PR Photo 06a/99 (18 February 1999 )

© European Southern Observatory

0 T
12, 13, 14 Gyr
(m-M),=1522 E, =004 -

2

5:.’ L

a4

6 -

0.2 0.4 0.6 08

(M68, |Straniero, Chieffi & Limongi, (1997, Fig. 11)

Globular clusters: HRD
different from open
clusters:

* population I

= 7 K Zy

e evolved
Use theoretical HRDs
(isochrones) to obtain
distance.
For distant clusters: MS
unobservable
= position of horizontal
branch.



-

Basic principle (Baade, 1926): Assume black body
= Use color/spectrum to get kT q

= Emitted intensity is Planckian, B,

= Observed Intensity is [, c 7R? - B,

Radius from integrating velocity profile of spectral lines:

2
Rz - Rl = p/ v dt (5.12)
1

(p: projection factor between velocity vector and line of sight).

Wesselink (1947): Determine brightness for times of same color
= rather independent of knowledge of stellar spectrum (deviations from B,)).

Stars: Calibration using interferometric diameters of nearby giants.

Baade-Wesselink works for pulsating stars such as RR Lyr, Cepheids,
Miras, and expanding supernova remnants.

'Baade-Wesselink] ~

\_
Standard Candles: Galactic Distances 5
4 RR Lyri
10
11 | .
12 4
13 | 3
* 7 1 RR Lyrae variables: Stars crossing
15 |
: . instability strip in HRD
16 - L ; -
Wk s = Variability (P ~ 0.2...1d)
3 =—> RR Lyr gap (change in color!).
: : Absolute magnitude of RR Lyr gap:
o g My, = 0.6, Mg = 0.8mag, i.e.,
22 F LRR ~ 50 L@.
o3 E M determined from ZAMS fitting, statistical parallax, and
b Baade-Wesselink method.
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9 B-v M2: [Lee & Carneyl (1999, Fig. 2)
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RR Lyr
4 Y| R
Vs P <ol Lightcurve shows characteristic color variations over
{62 T3 pulsation (temperature change!), and a fast rise,
ook '\\ '\ slow decay behavior.
Eox % » % RR Lyrin GCs show bimodal number distribution due to a
" 16.0 7¥ " ; 3 metallicity effect:
s x E * RRab with P > 0.5d and most probable period of
le.4 “‘g L E Py ~ 0.7d, and
e b TTHTRTRTRTER @ RRe, with P < 0.5d and P, ~ 0.3d.
o 7 7 M is larger for higher Z, i.e., metal-rich RR Lyr are fainter
*a‘*‘ j\\ — difference in RR Lyr from population 1 and 1.
m 16.0 ? ¥ &’x ¥ ’E
toafl o RR Lyr work out to LMC and other dwarf
168 \“"\.r E galaxies of local group, however, used mainly
0.0 -
oaf ﬁ%\ & for globular clusters.
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Phase (Lee & Carney, h.99d, Fig. 5)
-
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Previous methods: Selection of methods for distances within Milky Way (and
Magellanic Clouds): Basis for extragalactic distance scale.

Primary extragalactic distance indicators: Distance can be calibrated
from observations within milky way or from theoretical grounds.

Primary indicators usually work within our neighborhood (i.e., out to Virgo cluster
at 15-20 Mpc).
Examples: Cepheids, light echos,.. .

Secondary extragalactic distance indicators: Distance calibrated from
primary distance indicators.

Examples: Type la SNe, methods based on integral galaxy properties.
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