Motivation

Ν

Motivation	ъ	Motivation
The early univers	(6.14)	$\frac{u_{\text{CMBR}}}{u_{\text{baryons}}} = \frac{a_{\text{rad}}T^4}{\Omega\rho_c c^2} = \frac{4.20 \times 10^{-13}}{1.69 \times 10^{-8}\Omega h^2} = \frac{1}{40260\Omega h^2}$ That's why we talk about the matter dominated universe.
Therefore, the Planckian remains a Pla	(6.13)	$\frac{n_{\text{baryons}}}{n_{\text{baryons}}} = \frac{1}{\Omega h^2}$
${\sf d}u'={{\sf d}u\over a^4}={8\pi hc\over a^4\lambda^5}{{\sf d}\lambda\over \exp(hc/kT\lambda)-1}$.		since $m_p = 1.67 \times 10^{-cr}$ g. \implies photons dominate the particle number: $m_p = 2.54 \times 10^7$
Cosmological redshift:	(3.58)	$\rho_{\rm c} = \frac{3H^2}{8\pi G} = 1.88 \times 10^{-29} h^2 \text{ g cm}^{-3} = 1.13 \times 10^{-5} h^2 \text{ protons cm}^{-3}$
What happened to the temperature of t Compare CMBR spectrum today with e (Differential) Energy density in $[\lambda, \lambda + c$	(6.12)	For the CMBR today: $n_{CMBR} = 400 \text{ photons cm}^{-3}$ Compare that to gravitating matter (protons for now). \implies critical density:
	6-6	CMBR
Motivation	4	Motivation
(for $h = 0.75$, $1 + z_{eq} = 13440$).	(6.12)	$n_{ m CMBR}=$ 400 photons cm $^{-3}$
The above definition of $z_{ m eq}$ is not entirely constrained y density, is ignored $(u_{\nu}\sim 68\% u_{\gamma},$ see Formally, matter-radiation equality defined fit	(6.11)	$n=\int_0^\infty {B_\lambda{ m d}\lambda\over hc/\lambda}=$ 20.28 T^3 photons cm $^{-3}$ Thus, for today's CMBR:
(for $h = 0.75$, 1 + $z_{eq} = 22650$)	y of	Since the energy of a photon is $E_{\gamma} = h\nu = hc/\lambda$, the total number densit photons is
\implies Photons dominate for large z , i.e., o Since $1 + z = R_0/R$ (Eq. 3.40), matter	(6.9) (6.10)	$\sigma_{\rm SB} = 5.670 \times 10^{-5} {\rm erg cm^{-3} K^{-4}}$ Stefan-Boltzmann $a_{\rm rad} = 7.566 \times 10^{-15} {\rm erg cm^{-2} K^{-4} s^{-1}}$ radiation density constant
The Universe was not always matter do Remember the scaling laws for the (energy $ ho_{ m m} \circ ho_{ m m} \circ ho_{ m r} \propto ho_{ m r} \propto ho_{ m r} \propto ho_{ m r} \kappa$	(6.8)	The total energy density of the CMB is obtained by integration: $u=\int_0^\infty B_\lambda\mathrm{d}\lambda=\frac{8\pi^5(kT)^4}{15h^3c^3}=\frac{4\sigma_{\rm SB}}{c}T^4=a_{\rm rad}T^4$ where
The Universe was not always matter do		
	6-5	

4	
	The early universe was hot \Longrightarrow Hot Big Bang Model!
(6.19)	$T(z) = (1+z)T_{0}$
R scales as	$X^{-} = \exp(nca/\kappa T X) - 1$ Therefore, the Planckian remains a Planckian, and the temperature of the CMBF
$=B_{\lambda'}(T/a)$ (6.18)	$\mathbf{d}u' = \frac{1}{a^4} = \frac{1}{a^4\lambda^5} \frac{1}{\exp(hc/kT\lambda) - 1} = \frac{1}{a^5\lambda^5} \frac{1}{\exp(hc/kT\lambda) - 1} = \frac{1}{\frac{1}{a^5}} \frac$
	iaking the expansion into account: $d\lambda$ $8\pi hc$ $ad\lambda$
(3.47)	Cosmological redshift: $\frac{\lambda'}{\lambda} = \frac{R'}{R} = \frac{1}{1+z} = a$
(6.17)	$d u = B_\lambda d \lambda$
	(Differential) Energy density in $[\lambda, \lambda + d\lambda]$:
	What happened to the temperature of the CMBR? Compare CMBR spectrum today with earlier times.
	CMBR
6	
თ	Motivation
	(for $h = 0.75$, $1 + z_{eq} = 13440$).
(6.16)	$1 + z_{ m eq} = 23900 \Omega h^2$
he background	The above definition of z_{eq} is not entirely correct: neutrino background, which increases the energy density, is ignored ($u_{\nu} \sim 68\% u_{\gamma}$, see later). Formally, matter-radiation equality defined from $n_{\text{baryons}} = n_{\text{relativistic particles}}$, giving
	(for $h = 0.75$, $1 + z_{eq} = 22650$)
(6.15)	1 + $z_{ m eq}$ = 40260 Ωh^2
	Since $1 + z = R_0/R$ (Eq. 3.40), matter-radiation equality was at
	\implies Photons dominate for large z , i.e., early in the universe!
(3.63, 3.64)	$\frac{\rho_{\rm m} \propto R^{-3}}{\rho_{\rm r} \propto R^{-4}} \implies \frac{\rho_{\rm r}}{\rho_{\rm m}} \propto \frac{1}{R}$
	Remember the scaling laws for the (energy) density of matter and radiation:
	The Universe was not always matter dominated:
	CMBR
6-7]

Throans	Percoved. weak force Loss estromagnate tores being malar force tores provints estromagnate tores tores malar force tores and multiple destrons tores and multiple destrons tores and tores tores and t	4 forces exhibited legtons slipit into sentitions and electrons garathy governs expansion quarks make protons/neutrons	faun quarks, leptons control minacion	4		matter and radiation $15 \times 10^9 \text{yr}$ 3 10^{-30} now	$^{-3}$ 10 ⁶⁷ yr 10 ³⁴ 10 ⁻²¹¹⁸ End of radiation dominated epoch 10 ⁷ yr 4000 10 ⁻²⁰ Hydrogen recombines, decoupling of	10 min 3×10^9 10^{-3} nucleosynthesis	anti-baryon pairs from radiation background 1 min 10 ¹⁰ 0.03 generation of e ⁺ -e ⁻ pairs out of	10^{-4030} 10 ²⁵ Inflation? $\sim 10^{-5}$ s $\sim 10^{13}$ $\sim 10^{9}$ generation of p-p ⁻ , and baryon	10 ⁻⁴² 10 ³⁰ Planck era, "begin of physics"	t $T[K] \rho_{\text{matter}}$ Major Events	Overview
	$a = \begin{cases} -1 : Bosons (spin=1, 2,) \\ 0 : Maxwell-Boltzmann \end{cases}$ and where the energy includes the rest-mass: $E^2 = \mathbf{p} ^2 c^2 + m^2 c^4$ μ is called the "chemical potential". It is preserved in chemical equilibrium:	$f(\mathbf{p}) = \frac{1}{\exp\left((E-\mu)/k_{\rm B}T\right) + a}$ where $\left(\begin{array}{c} +1 \\ +1 \end{array} \right) = \frac{1}{\exp\left((E-\mu)/k_{\rm B}T\right) + a}$	For ideal gases, thermodynamics shows that number density $f(p) dp$ of particle: in $[p, p + dp]$ is given by	Big Bang Thermodynamics	Before looking at real universe, first need to derive certain useful formulae from thermodynamics.	If thermodynamic equilibrium holds, then we can assume evolution of universe a states of local thermodynamic equilibrium and use standard thermodynamics	$\Gamma \gg H$ Where the Hubble parameter. H is a good measure for (typical timescale of the	Thermodynamic equilibrium reached if reaction rate much faster than "changes"	n: number density (cm ⁻³) σ : interaction cross-section (cm ²) v: velocity (cm s ⁻¹)	$\Gamma \propto n \sigma v$ where	reaction rates	Density in early universe is very high.	Inermodynamics, I

Big Bang Thermodynamics

6–11

on etc.) all have

(6.20)

in the system,

(6.21)

elativistic sequence of Jniverse)¹.

6-12

_

with momentum

(6.22)

(6.23)

(6.24)

photons: multi-photon processes exist $\implies \mu_{\gamma} = 0$. *particles in thermal equilibrium:* $\mu = 0$ as well because of the first law of thermodynamics,

 $\mathrm{d} E = T \; \mathrm{d} S - P \; \mathrm{d} V + \mu \; \mathrm{d} N$

(6.25)

 $i + j \leftrightarrow k + l \implies \mu_i + \mu_j = \mu_k + \mu_l$

and in equilibrium system stationary with respect to changes in particle number N

Temperature (degrees K) 3000 -10¹³-10¹⁵-1027-10¹⁰- 10^{6} 10^9 ω Supergravit black ho 10⁻⁴³ 10⁻³⁵ 10⁻¹² sec Age of the Universe 800-6 Sec – 86 IS ¥ BD. -76% hydrog en 24% helium 500,000 13 billion yrs yrs photons decouple = CMB galaxies, stars planets form C J. Schombert

Overview

10 ³⁴ T

	6-13
In addition to number density: different particles have internal degrees of freedom, g .	
Examples:	
photons: two polarization states \Longrightarrow $g = 2$ neutrinos: one polarization state \Longrightarrow $g = 1$	
Knowing g and $f(p)$, it is possible to calculate interesting quantities:	
particle number density: $n=rac{g}{(2\pi\hbar)^3}\int f(oldsymbol{p}) d^3p$	(6.26)
energy density: $u= ho c^2=rac{g}{(2\pi\hbar)^3}\int E(oldsymbol{p}) { m d}^3 p$	(6.27)
To calculate the pressure, remember that kinetic theory shows:	
$P=rac{n}{3}\langle pv angle =rac{n}{3}\left\langle rac{p^{2}c^{2}}{E} ight angle$	(6.28)
such that $P=\frac{g}{(2\pi\hbar)^3}\int \frac{p^2c^2}{3E}f({\bf p})\;{\rm d}^3p$	(6.29)
Big Bang Thermodynamics	ω
	6–14
Generally we are interested in knowing $n \in \mathbb{N}$ and P in two limiting cases:	
1. the ultra-relativistic limit, where $k_{\rm B}T\gg mc^2,$ i.e., kinetic energy dominate the rest-mass	US S
2. the non-relativistic limit, where $k_{ m B}T \ll mc^2$	
Transitions between these limits (i.e., what happens during "cooling") are us much more complicated \implies ignore	ually
Big Bang Thermodynamics	4

6-14

To derive the

Obtaining the previous formulae is an exercise in special functions. For example, the $T \gg m$, $T \gg \mu$ case for ρ for Bosons (Eq. 6.39) is obtained as follows (setting $c = h_B = \hbar = 1$):

$$\rho_{\rm Basson} = \frac{g}{2\pi^2} \int_m^\infty \frac{(E^2 - m^2)^{1/2}}{\exp\left((E - \mu\right)/T\right) \pm 1}$$
(6.41)

because of $T \gg \mu$

$$\approx \frac{g}{2\pi^2} \int_m^\infty \frac{(E^2 - m^2)^{1/2} E^2 \,\mathrm{d}E}{\exp(E/T) \pm 1}$$
(6.42)

for Bosons, choose -1, and substitute x = E/T:

$$= \frac{g}{2\pi^2} \int_{m/T}^{\infty} \frac{(x^2 T^2 - m^2)^{1/2} x^2 T^3 dx}{\exp(x) - 1}$$

(6.43)

Since $T \gg m$,

$$\approx \frac{g^2}{2\pi^2} \int_0^\infty \frac{x^3 T^4 \, \mathrm{d}x}{\exp(x) - 1}$$

$$= \frac{g T^4}{2\pi^2} \int_0^\infty \frac{x^3 \, \mathrm{d}x}{\exp(x) - 1}$$

$$= \frac{g T^4}{2\pi^2} \cdot \mathrm{ec}(\mathbf{A})$$

$$= \frac{g T^4}{30} g T^4$$

$$(6.45)$$

$$(6.46)$$

$$(6.47)$$

where $\zeta(s)$ is *Riemann's zeta-function*, which is defined by (Abramowitz & Stegun, 1964)

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{\exp(x) - 1} \, \mathrm{d}x$$
 for $\mathscr{R}es > 1$

(6.48)

where $\Gamma(x)$ is the Gamma-function. Note that $\zeta(4)=\pi^4/90.$

or *Fermions*, everything is the same except for that we now have to choose the + sign. The equivalent of Eq. (6.45) is then
$$\rho_{\text{Fermin}} = \frac{dT^4}{2\pi^2} \int_0^\infty \frac{x^3 dx}{\exp(x) + 1}$$
(6.49)
Now we can make use of formula 3.411.3 of Gradstein & Ryshik (1961).

z

$$\int_{0}^{\infty} \frac{x^{\nu-1} \, \mathrm{d}x}{\exp(\mu x) + 1} = \frac{1}{\mu^{\nu}} (1 - 2^{1-\nu}) \Gamma(\nu) \zeta(\nu) \quad \text{for } \mathscr{R}e \, \mu, \nu > 1$$

7

11.3 of Gradslein & Ryshik (1981),

$$\int_{-\infty}^{\infty} \frac{x^{\nu-1} \, \mathrm{d}x}{x^{\nu-1} \, \mathrm{d}x} = \frac{1}{-\nu} (1 - 2^{1-\nu}) \Gamma(\nu) \zeta(\nu) \quad \text{for } \mathscr{R}e \, \mu, \nu > 1$$

$$\rho_{\text{Ferm}} = \frac{gt^{1-}}{2\pi^2} \int_{0}^{\infty} \frac{x^{4} dx}{\exp(x) + 1}$$
(6.49)
tein & Ryshik (1981),

$$\int_{0}^{\infty} \frac{x^{\nu-1} dx}{\exp(\mu x) + 1} = \frac{1}{\mu^{\nu}} (1 - 2^{1-\nu}) \Gamma(\nu) \zeta(\nu) \quad \text{for } \Re e \ \mu, \nu > 1$$
(6.50)

ormula 3.411.3 of Gradslein & Ryshik (1981),

$$\int_{-\infty}^{\infty} x^{\mu-1} dx = 1 \quad \text{of } x^{\mu-1} + x^{\mu-1} dx$$

see where the additional factor of
$$7/8$$
 in Eq. (6.39) comes from.

Intermodynamics, VI
 6-16

 In the non-relativistic limit:
$$k_B T \ll mc^2$$
 mc^2
 \Rightarrow can ignore the ± 1 term in the denominator
 $n = \frac{2g}{(2\pi h)^3} (2\pi m k_B T)^{3/2} e^{-mc^2/k_B T}$
 (6.51)

 \Rightarrow Same formulae for Bosons and Fermions!
 $n = mc^2$
 (6.51)

 \Rightarrow Same formulae for Bosons and Fermions!
 $n = mc^2$
 (6.51)

 $u = nmc^2$
 (6.52)
 (6.53)

 $P \ll \rho c^2/3$, i.e., much smaller than for relativistic particles.
 (6.53)

 $P \approx \rho c^2/3$, i.e., much smaller than for relativistic.
 (6.53)

 $P \approx \rho c^2/3$, i.e., much smaller than for relativistic particles.
 (6.53)

 $P = nk_B T$
 (6.53)

 Obviously, relativistic particles when the interaction rates go to 0.
 (6.53)

 Big Bang Thermodynamics
 6

 Pressure of ultra-relativistic particles \gg Pressure of nonrelativistic. Still, they can the cantivistic particles \gg Pressure of nonrelativistic particles \Rightarrow Nonrelativistic particles \gg Pressure of nonrelativistic particles \Rightarrow Nonrelativistic particles \gg Pressure of nonrelativistic particles \Rightarrow Prometativistic particles \Rightarrow Pressure of nonrelativistic particles \Rightarrow Pressure of nonrelat

particles:

$$u_{\text{bosons}} = \frac{\pi^2}{30} g k_{\text{B}} T \left(\frac{k_{\text{B}}T}{\hbar c}\right)^3$$
 and $u_{\text{fermions}} = \frac{7}{8} u_{\text{bosons}}$ (6.39)

$$u = g_* \cdot \frac{\pi^2}{30} k_{\rm B} T \left(\frac{k_{\rm B} T}{\hbar c}\right)^3 \tag{6.54}$$

where the effective degeneracy factor

$$g_* = \sum_{\text{bosons}} g_{\text{B}} \left(\frac{T_{\text{B}}}{T}\right)^4 + \frac{7}{8} \sum_{\text{fermions}} g_{\text{F}} \left(\frac{T_{\text{F}}}{T}\right)^4$$
(6.55)

 g_* counts total number of internal degrees of freedom of *all* relativistic bosonic and fermionic species, i.e., all relativistic particles which are in thermodynamic equilibrium

The pressure is obtained from Eq. (6.54) via P=u/3.

	6–18
Early Expansion, I	
Knowing the equation of state, we can now use Friedmann equations to determine the early evolution of the universe.	
Friedmann: $\dot{R}^2 = \frac{8\pi G}{2}\rho R^2 - kc^2 \qquad \qquad$	3.55)
or, dividing by R^2 $\dot{R}^2 = \frac{1}{41/4} \frac{2}{2} - 8\pi G = kc^2$	
$\frac{\kappa}{R^2} = H(t)^2 = \frac{8\pi G}{3}\rho - \frac{\kappa}{R^2}$	3.56)
But: The early universe is dominated by relativistic particles $\implies \rho \propto R^{-4}$	
⇒ Density-term dominates	
\implies we can set $k = 0$.	
Early universe is asymptotically flat!	
This will prove to be one of the most crucial problems of modern cosmology	
Early Universe	-
	6 <u> </u> 9
Early Expansion, II	J
To obtain the evolution of the early universe, insert the Equation of State (Eq. 6.54) into E_{α} (2.56).	
$H(t)^2 = \frac{8\pi G}{3}g_* \frac{\pi^2 (k_{\rm B}T)^4}{30 (\hbar c)^3} = \frac{4\pi^3 G}{45(\hbar c)^3}g_* (k_{\rm B}T)^4$	(6.56)
such that $H(t) = \left(rac{4\pi^3 G}{45(h_C)^3} ight)^{1/2} g_*^{1/2} (k_{ m B}T)^2$	(6.57)
On the other hand, since $ ho \propto R^{-4}$ (relativistic background),	
$ ho= ho_0\left(rac{R_0}{R} ight)^4$	(6.58)
Friedmann:	
$rac{{\mathsf d}R}{{\mathsf d}t}=\sqrt{rac{8\pi G ho_0}{3}}rac{R_0^2}{R}$	(6.59)
Introducing the dimensionless scale factor, $a=R/R_{0}$ (Eq. 3.29), gives	
$\frac{\mathrm{d}a}{\mathrm{d}t} = \sqrt{\frac{8\pi G\rho_0}{3}}\frac{1}{a} =: \xi a^{-1}$	(6.60)
Early Universe	N

Early Universe 4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Behavior of universe depends on $g_* \Longrightarrow$ Strong dependency on elementary particle physics. Generally, particles present when energy in other particles allows generation of particle–antiparticle pairs, i.e., when $k_{\rm B}T \gtrsim mc^2$ (threshold temperature) Current particle physics provides the following picture (Olive, 1999, Tab. 1):	Elementary Particles, I	Early Universe	$t = \frac{2.4 \text{ sec}}{g_*^{1/2}} \cdot \left(\frac{k_{\rm B}T}{1 {\rm MeV}}\right)^{-2} \tag{6.64}$, one of the most useful equations for the early universe.	$t = \left(\frac{45(\hbar c)^3}{16\pi^3 G}\right)^{1/2} \frac{1}{g_*^{1/2}} \frac{1}{(k_{\rm B}T)^2}$ Inserting all constants and converting to more useful units gives (6.63)	Therefore, the Hubble constant evolves as $H(t)=rac{\dot{a}}{a}=rac{1}{2t}$ (6.62) Equating Eqs. (6.57) and (6.62) gives the time-temperature relationship:	And using separation of variables gives $\int_{0}^{a(t)} a da = \int_{0}^{t} \xi dt \implies a(t) = \xi^{1/2} \cdot t^{1/2} $ (6.61)	Early Expansion, III 6-20
------------------	---	---	-------------------------	----------------	--	--	--	---	---------------------------

Early Universe 6	Will use approximate analytical way here, which gives surprisingly exact answers.	Detailed computations require solving nonlinear differential equations \implies difficult, only numerically possible. Essentially, need to self-consistently solve Boltzmann equation in expanding universe for evolution of phase space density with time, using the correct QCD/QED reaction rates \implies too complicated (at least for me).	 The existence and energy of primordial neutrinos, The formation of neutrons, The formation of heavier elements. 	Interlude Previous (abstract) formulae allow to estimate quantities like		Early Universe 5	(Olive, 1999, Fig. 1) (Olive, 1999, Fig. 1) Will now consider times when only Neutrinos and Electron/Positrons present (after baryogenesis, see next lecture for that).		$g_{\bullet} = \frac{T_c = 150 \text{ MeV}}{T_c = 400 \text{ MeV}}$	80	Elementary Particles, II 6-22
Early Universe	This follows from Eq. (6.64), remembering that for this phase, $g_* \sim 10$. Since decoupling, primordial neutrinos just follow expansion of universe, virtu no interaction with "us" anymore.	numbers) $k_{ m B}T_{ m dec}\gtrsim \left(rac{500\ c^6\ m_{ m W}^4}{m_{ m P}} ight)^{1/3}\sim 1\ { m MeV}$ (6)Neutrinos decouple \sim 1 s after the big bang.	constant is $H(T) = 1.66g_*^{1/2} \cdot \frac{T^2}{m_p}$ (6) where m_p is the Planck mass, $m_pc^2 = 1.22 \times 10^{19}$ GeV (see later, Eq. 6.122 Neutrino equilibrium possible as long as $\Gamma_{\text{weak}} > H$, i.e., (inserting exact	Neutrinos, II Because of Eqs. (6.62) and (6.63), the temperature dependence of the Hubbl		Early Universe	$m_{ m W}$: mass of W-boson (exchange particle of weak interaction), $lpha \approx 1/137$: fine structure constant. But in the ultra-relativistic limit, $n \propto T^3$ (Eq. 6.38), such that $\Gamma_{ m Weak} \propto \frac{\alpha^2 T^5}{m_W^4}$ (6)	where the thermally averaged interaction cross-section is $\langle \sigma v \rangle \approx \left\langle \frac{\alpha^2 p}{m_W^4} \cdot p \right\rangle \sim 10^{-2} \frac{(k_{\rm B}T)^2}{m_W^4}$ (6)	Reaction rate for these processes: $\Gamma = n \left< \sigma v \right> \tag{6}$	Neutrino equilibrium caused by weak interactions such as $e^- + e^+ \leftrightarrow \nu + \bar{\nu}$ or $e^- + \nu \leftrightarrow e^- + \nu$ etc. (6)	Neutrinos, I
ω	ally	.70)	.69)).	e	-25	7	.68)	.67)	.66)	.65)	-24

Early Universe

Early Universe	Entropy per mass today: $\frac{S}{M} = \frac{10^{16}}{\Omega h^2} \operatorname{erg} \mathrm{K}^{-1} \mathrm{g}^{-1} \qquad (6)$ while the entropy gain of heating water at 300 K by 1 K is ~ 1.4 × 10 ⁵ erg K ⁻¹ g ⁻¹ . \implies "Human attempts to obey 2nd law are swamped by microwave background" (Peacor 1999, p. 277). $\implies S = \text{const.}$ for universe to very good approximation. \implies Universe expansion is adiabatic!	$g_{*,S} = \sum_{\text{bosons}} g_{\text{B}} \left(\frac{T_{\text{B}}}{T}\right)^3 + \frac{7}{8} \sum_{\text{fermions}} g_{\text{F}} \left(\frac{T_{\text{F}}}{T}\right)^3$ (6) Note that if the species are not at the same temperature, $g_* \neq g_{*,S}$.	For a mixture of backgrounds, Eq. (6.73) gives $\frac{s}{k_{\rm B}} = g_{*,S} \cdot \frac{2\pi^2}{45} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3$ where $g_{*,S}$ is the analogue to g_* (Eq. 6.55), (6)	Early Universe	Inserting Eq. (6.39) $(u \propto (7/8)T^4; 7/8 \text{ for Fermions only})$ gives $s = \frac{7}{8} \frac{2\pi^2}{45} g k_{\rm B} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 = \frac{7}{8} \frac{2\pi^4}{45\zeta(3)} k_{\rm B} n \qquad (6.)$ Since $s \propto n$ for backgrounds, $\eta = n_{\rm CMBR}/n_{\rm baryons}$ is often called "entropy per baryon".	Important for cosmology: relativistic limit. Define the entropy density, $s = \frac{S}{V} = \frac{E/V + P}{T} = \frac{u + P}{T} \approx \frac{4}{3} \frac{u}{T}$ (6. (last step for relativistic limit; Eq. 6.40)	The entropy of particles is defined through $S = \frac{E + PV}{T}$ (6.	Entropy I
10	6.76) ock,	6.75)	6.74)	-27 9	.73)	1.72)	5.71)	26
Early Universe	Since $T_{after} > T_{before}$: "reheating". Note that in reality the annihilation is not instantaneous and T decreases (albeit less rapidly) during "reheating" \Rightarrow Since neutrino-background does not "see" annihilation \Rightarrow just continues to cool \Rightarrow current temperature of neutrinos is $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{CMBR} \sim 1.95 \mathrm{K}$	$g_{*,S}(T_{ m before}) \cdot T_{ m before}^3 = g_{*,S}(T_{ m after}) \cdot T_{ m after}^3$ such that $T_{ m after} = \left(rac{11}{4} ight)^{1/3} T_{ m before} \sim 1.4 \cdot T_{ m before}$	Difference in $g_{*,S}$: • before annihilation: e ⁻ , e ⁺ , $\gamma \Longrightarrow g_{*,S} = 2 + 2 \cdot 2 \cdot (7/8) = 11/2$. • after annihilation: $\gamma \Longrightarrow g_{*,S} = 2$ But: the total entropy for particles in equilibrium conserved ("expansion is adiabatic"):	Early Universe	⇒ as long as $g_{*,S} = \text{const.}$ we have $T_{\nu} = T$ ⇒ Immediately after decoupling, neutrino background appears as if it is still in equilibrium. However: Temperature for neutrino decoupling $\sim 2m_ec^2$. But, for $kT_{BB} < 2 m_ec^2$, pair creations $\gamma + \gamma \longleftrightarrow e^- + e^+$ is kinematically impossible. ⇒ Shortly after neutrino decoupling: e^{\pm} annihilation $\Rightarrow g_{*S}$ changes! ⇒ We expect that $T_{CMBR} \neq T_{\nu}$.	On the other hand, the temperature of the universe is $T\propto g_{*,S}^{1/3}R^{-1}$ This follows from $S/V\propto T^3$ (Eq. 6.74), $V\propto R^3$, and $S=$ const. (adiabatic expansion of the universe)	After decoupling of neutrinos, neutrino distribution just gets redshifted (similar to CMBR, Eq. 6.19): $\frac{T_{\nu}}{T_{\rm dec}} = \frac{R_{\rm dec}}{R(t)} \implies T_{\nu} \propto R^{-1}$	Reheating
12	;.82)	3.80) 3.81)			n, 5.79)	3.78)	i.77)	28

Ν

Big Bang Nucleosynthesis: Theory