	6–34		6-36
Heavier Elements, I		Remarkable I hings	
Once deuterium present:		Note the following coincidences:	
nucleosynthesis of lighter elements:		1 Experience of a second provide the france of a post-	
$D + D \longrightarrow T + p$		ו. רו שעבש טענ טו זועטשטווא אווזעונמויפטעא נט וויפעבש טענ טו וופענוווויטא.	
$D + n \longrightarrow T + \gamma$		2and parallel to electron-positron annihilation.	
$D + p \longrightarrow {}^{3}He + \gamma$	(6.93)	3 Expansion is slow enough that neutrons can be bound to nuclei.	
$D + D \longrightarrow {}^{3}He + n$			
3 He + n \longrightarrow T + p		\Longrightarrow Long chain of coincidences makes our current universe possible!	
production of ⁴ He:			
$D + D \longrightarrow {}^{4}He + \gamma$			
$D + {}^{3}He \longrightarrow {}^{4}He + p$			
$T + D \longrightarrow {}^{4}He + n$	16 011		
3 He $+$ 3 He \longrightarrow 4 He $+$ 2p	(0.97)		
$T + p \longrightarrow {}^{4}He + \gamma$			
3 He + n \longrightarrow 4 He + γ			
Big Bang Nucleosynthesis: Theory	J	Big Bang Nucleosynthesis: Theory	7
	ก ง ภ		0 2 7
Heavier Elements, II		Detailed Calculations, I	
Element gap at $A = 5$ can be overcome to produce Lithium:		1. Generally, BBN operates as a function of the entropy per baryon, η .	
3 He + 4 He $\longrightarrow ^{7}$ Be + γ		Remember that the entropy density for a baryon is	
${}^{\prime} ext{Be} \longrightarrow {}^{\prime} ext{Li} + ext{e}^+ + u_{ ext{e}}$ $T + {}^{4} ext{He} \longrightarrow {}^{7} ext{Li} + ext{e}^+ + u_{ ext{e}}$	(6.95)	$s = \frac{7}{2} \frac{2\pi^2}{4\pi} g k_{\rm B} \left(\frac{k_{\rm B}T}{\pi}\right)^3 = \frac{7}{2} \frac{2\pi^4}{4\pi^2 M_{\rm B}} k_{\rm B} n \qquad (6)$	6.73)
Gap at $A = 8$ prohibits production of heavier isotopes.			
\Longrightarrow Major product of BBN: ⁴ He.		and therefore the entropy per baryon is	
Mass fraction of ⁴ He can be estimated assuming all neutrons incorporated into ⁴ He		$\eta = \frac{n_{\text{barvons}}}{n_{\text{barvons}}} \tag{6}$	6.98)
m = n		Note that <i>n</i> is related to Ω in barvons. $\Omega_{\rm B}$:	
$X = \frac{n_{\rm p} - n_{\rm n}}{n_{\rm p} + n_{\rm n}}$	(6.96)	$\Omega_{2} = 3.67 \times 10^{7} \cdot m$	R 00)
and		$a_{B} = 3 \cdot 0 \times 10 \times 10$	(GG:0
$Y = 1 - \frac{n_{p} - n_{n}}{n_{p} + n_{n}} = 2\left(1 + \frac{n_{p}}{n_{n}}\right)^{-1}$	(6.97)	(since η , Ω determine expansion behavior) \implies Perform computations as function of η !	
Because of neutron decay, at $k_{\rm B}T = 0.8$ MeV: $n_{\rm p}/n_{\rm p} = 1/7$, such that		2. Since Y is set by n_p/n_n	
DDN produce prime relation relation relation $V = 0.05$		\implies He abundance is relatively independent from η	
Deny previous printipular me-apprintative of $T = 0.23$.			
Big Bang Nucleosynthesis: Theory	0	Big Bang Nucleosynthesis: Theory	œ

 $\log \ n/n_{\text{H}}$ -18 -14-20 -16 -12 -24 -22 10-1 10 "Be в η 10 10 в 10-

Intermediate mass abundances as function of η (Olive, 1999, Fig. 5)

Nucleosynthesis: Observations

Nucleosynthesis: Observations

12

a da contra da contra

	6-58
Summary	
$t=$ 1.1 s $T=10^{10}{ m K}$ $ ho\sim 10^5$	$_{\it O}\sim 10^5{ m gcm^{-3}}$
Neutrinos decouple, e ⁻ -e ⁺ pairs start to annihilate. No nuclei.	
25% n, 75% p	
$t=$ 13 s $T=$ 3 $ imes$ 10 ⁹ K $ ho \sim$ 10 ⁵	$o\sim 10^5{ m gcm^{-3}}$
Reheating of photons, pairs annihilate, $ u$ fully decoupled, deuterium still c	ım still cannot
form.	
17% n, 83% p	
$t=3{ m min}$ $T=10^9{ m K}$ $ ho\sim 10^5$	$o\sim 10^5{ m gcm^{-3}}$
Pairs are gone, neutron decay becomes important, start of nucleosynthes	synthesis
14% n, 86% p	
Summary: Classical Big Bang	o N
Summary	
$t=$ 35 min $T=$ 3 $ imes$ 10 ⁸ K $ ho\sim$ 0.1 game over	$ ho \sim 0.1{ m gcm^{-3}}$
Next important event: $t\sim$ 300000 years: Interaction CMB/matter stops ("scattering", recombination).	stops ("last
Before we look at this, we look at the first 0.01 s: the very early universe	
Summary: Classical Big Bang	ω

Wagoner, R. V., Fowler, W. A., & Hoyle, F., 1967, ApJ, 148, 3

Kirkman, D., Tytler, D., Suzuki, N., O'Meara, J. M., & Lubin, D., 2003, Astrophys. J., Suppl. Ser., 149, 1 Tytler, D., O'Meara, J. M., Suzuki, N., & Lubin, D., 2000, Phys. Scripta, in press (astro-ph/0001318) Thomas, D., Schramm, D. N., Olive, K. A., & Fields, B. D., 1993, ApJ, 406, 569 Spite, F., & Spite, M., 1982, A&A, 115, 357 Spergel, D. N., et al., 2007, Astrophys. J., Suppl. Ser., 170, 377 Smoot, G. F., 1997, in Strasbourg NATO school on the CMB, Kluwer), astro-ph/9705101 Olive, K. A., 1999, in Advanced School on Cosmology and Particle Physics, in press (astro-ph/9901231) Molaro, P., 2007, in Pathways Through an Eclectic Universe, ed. J. Knapen, T. Mahoney, A. Vazdekis, in press (arXiv:0708.3922) Kolb, E. W., & Turner, M. S., 1990, The Early Universe, Frontiers in Physics 68, (Reading, Mass.: Addison-Wesley) Kneller, J. P., & Steigman, G., 2004, New J. Phys., 6, 117 Islam, J. N., 1992, An Introduction to Mathematical Cosmology, Cambridge Univ. Press) Gradstein, I. S., & Ryshik, I. M., 1981, Tables of Series, Products, and Integrals, Vol. 1, (Thun, Frankfurt/M.: Harri Deutsch) Christlieb, N., et al., 2002, Nature, 419, 904 Burles, S., Nollett, K. M., & Turner, M. S., 1999, Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space, APS Centennial Exhibit, astro-ph/9903300 Bonifacio, P., et al., 2007, A&A, 462, 851 Abramowitz, M., & Stegun, I. A., 1964, Handbook of Mathematical Functions, (Washington: U.S. Government Printing Office), (9th reprint, Mineola: Dover, 1972) Penzias, A. A., & Wilson, R. W., 1965, ApJ, 142, 419 Peacock, J. A., 1999, Cosmological Physics, (Cambridge: Cambridge Univ. Press) Frebel, A., et al., 2005, Nature, 434, 871

6-59