

Structures: Quantitative Description

က

$= \frac{1}{2} - 0.05 \frac{1}{0} + \frac{1}{2} + \frac{1}{2}$	$ \begin{cases} \text{ is related to the density contrast } \Delta(x): \\ \text{ Write the density n as } \\ n(x) = n_0(1 + \Delta(x)) \iff \Delta(x) = \delta n/n \\ \text{ Average joint probability to have galaxies at x and x + r: \\ n(x) = \langle n \langle n \rangle dV_1 \cdot n(x + r) dV_2 \rangle \\ = \langle n_0^2(1 + \Delta(x))(1 + \Delta(x + r)) dV_1 dV_2 \rangle \\ \text{ Since } \langle \Delta \rangle = 0, \text{ only the cross product survives the averaging:} \\ = n_0^2(1 + \langle \Delta(x)\Delta(x + r)\rangle) dV_1 dV_2 \\ \text{ where } \langle \dots \rangle \text{ denotes averaging over an appropriate volume, i.e.,} \\ \langle f(r) \rangle = \frac{1}{V} \int_V f(r) d^3 r \\ \text{ Structures: Quantitative Description} \\ \hline \text{ Correlation Function, VII} \end{aligned} $	(9.7) (9.8) (9.9) (9.10) (9.11) (9.11)
The spatial correlation $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	The two-point correlation function was defined via $P \propto n^{2}(1 + \xi(r_{12})) \Delta V_{1} \Delta V_{2}$ while we just found $P = n_{0}^{2}(1 + \langle \Delta(\boldsymbol{x})\Delta(\boldsymbol{x} + \boldsymbol{r}) \rangle) dV_{1} dV_{2}$ Comparing these two equations shows: $\xi(r) = \langle \Delta(\boldsymbol{x})\Delta(\boldsymbol{x} + \boldsymbol{r}) \rangle$ $\xi(r) = \langle \Delta(\boldsymbol{x})\Delta(\boldsymbol{x} + \boldsymbol{r}) \rangle$ $\xi(r) \text{ is a measure for the average density contrast at places separated by distance r.}$	(9.3) (9.10) (9.12)

Structures: Quantitative Description

ß

Structures: Quantitative Description

 \sim

Power Spectrum, I	9-4-
To describe the strength of fluctuations, a good measure is the variance of the density fluctuation	Therefore
Let's calculate this around an arbitrary location, $x=0$. $Var(x)=rac{1}{\sqrt{k_{n}(x)-k_{n}}}\sqrt{k_{n}(x)}$	$\operatorname{Var}(n) = \left\langle \Delta^2 \right\rangle = \frac{V}{(2\pi)^3} \int \Delta_k^2 \mathrm{d}^3 k = \frac{V}{(2\pi)^3} \int P(k) \mathrm{d}^3 k \qquad (9.25)$
$= \frac{1}{\tau^{\prime}} \int (n_0(1 + \Delta(\mathbf{r}))) d\mathbf{v} $ $= \frac{1}{\tau^{\prime}} \int (n_0(1 + \Delta(\mathbf{r})) - n_0)^2 dV $ (9.1)	where the power spectrum is defined by
$=\frac{V}{V}\int \Delta(\mathbf{r})^2 dV \tag{9.1}$	$P(k) = \Delta_k^2 = \left(\frac{1}{V} \int \Delta(\mathbf{r}) \exp(+i\mathbf{k} \cdot \mathbf{r}) \mathrm{d}^3 r\right)^2 $ (9.26)
To evaluate the integral, it is more convenient for most calculations to work in Fourier space tha	
in "normal" space. Define the Fourier transform in spatial coordinates through:	The power spectrum is a measure for the strength of density fluctuations at wave number k .
$\Delta_r(\boldsymbol{r}) = \frac{V}{(2\pi)^3} \int \Delta_k(\boldsymbol{k}) \exp(-i\boldsymbol{k}\cdot\boldsymbol{r}) \mathrm{d}^3k \tag{9.1}$	
$\Delta_k(oldsymbol{k}) = rac{1}{V} \int \Delta(oldsymbol{r}) \exp(+ioldsymbol{k}\cdotoldsymbol{r}) \mathrm{d}^3 r$ (9.2)	
Structures: Quantitative Description	8 Structures: Quantitative Description 10
6	0.45
Power Spectrum, II	Power Spectrum, IV
Therefore	How are $\langle \Delta^2 angle$ and ξ related?
$\operatorname{Var}(n) = \frac{1}{V} \int \Delta_r(r)^2 dV \tag{9.3}$	\rightarrow Use brute force computation or make use of the correlation theorem.
$= \frac{1}{V} \int \left(\frac{V}{(\boldsymbol{\sigma}_{-\lambda})^3} \int \Delta_k \exp(-i\boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d}^3 k \right)^2 dV \tag{9.1}$	For functions $g,h,$ the correlation theorem states that the Fourier transform of the correlation,
$= \frac{V}{(-V)} \int (\Delta_k \exp(-i\mathbf{k} \cdot \mathbf{r}) \mathrm{d}^3 k) \left(\int \Delta_k \exp(-i\mathbf{k}' \cdot \mathbf{r}) \mathrm{d}^3 k' \right) dV \qquad (9.2)$	$Corr(g, h) = \int g(x+r)h(r) dx $ (9.27)
$= \frac{V}{V} \int \int \int \Lambda_{1} \Lambda_{1} \exp(-i(k - k^{\prime}) \cdot \sigma) d^{3}k' d^{3}k' d^{3}V $ (9)	is given by $FT\left(Corr(q,h)\right) = G H^* \tag{9.28}$
$\frac{(2\pi)^6}{V} \int \int -h^{-h} dx + \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \int$	where $G = FT(g)$, etc.
$= \frac{1}{(2\pi)^6} \int \int \Delta_k \Delta_{k'} (2\pi)^3 \delta(\boldsymbol{k} - \boldsymbol{k}') \mathrm{d}^3 k' \mathrm{d}^3 k' $	Therefore, setting $g=\Delta(r)$ and $h=\Delta(r),$
$= \frac{V}{(2\pi)^3} \int \Delta_k^2 \mathrm{d}^3 k \tag{9.2}$	$\xi(r) = \langle \Delta(\boldsymbol{x}) \Delta(\boldsymbol{x} + \boldsymbol{r}) \rangle = \frac{V}{(r_{a-3})^{3}} \int \Delta_k ^2 \exp(i\boldsymbol{k} \cdot \boldsymbol{r}) \mathrm{d}^3k \tag{9.29}$
This result is called Parseval's theorem	$f_{2}(NZ)$
$\frac{1}{V} \int \Delta_r^2(\mathbf{r}) \mathrm{d}^3 x = \frac{V}{(2\pi)^3} \int \Delta_k^2(\mathbf{k}) \mathrm{d}^3 k \tag{9.2}$	The power spectrum and ξ are Fourier transform pairs.
(from signal theory: the power in a time series is the same as the power in the associated Fourier transform	(remember Eq. 9.26, $P(k)=\Delta_k^2$ l) See Peebles (1980, sect. 31) for 100s of pages of the properties of ξ,P , etc.

Structures: Quantitative Description

Structures: Quantitative Description

ი

1

9-46		9–48
Power Spectrum: Measurements, I	Power Spectrum: Interpretation	
	To understand ξ and P better, let's assume an isotropic universe	
10^4 10^4	Since $\xi(m{r}) \propto \int P(m{k}) \exp(im{k}\cdotm{r}) \mathrm{d}^3k$	(9.29)
$M_{\text{PO}} = \begin{bmatrix} \alpha_{\text{A}} & \alpha_{\text{A}} & 0.62, \ \Omega_{\text{m}} & = 0.38 \\ \Omega_{\text{M}} & \Omega_{\text{M}} & 2000, \ h & = 0.63 \\ \Omega_{\text{M}} & \Omega_{\text{M}} & 2000, \ h & = 0.63 \\ \Omega_{\text{M}} & \Omega_{\text{M}} & \Omega_{\text{M}} & \Omega_{\text{M}} & \Omega_{\text{M}} & \Omega_{\text{M}} & \Omega_{\text{M}} \\ \Omega_{\text{M}} & \Omega_$	using spherical coordinates in k space, one finds:	
$(h^{-1})^{-1}$ is a power-raw, roughly described by	$oldsymbol{k} \cdot oldsymbol{r} = kr \cos heta \ \mathbf{d} V = k^2 \sin heta \mathbf{d} heta \mathbf{d} k$	(9.31) (9.32)
10^{2} 1	such that	~
1 spec	$\xi(r) \propto \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} P(k) \exp(ikr\cos heta) k^{2} \sin heta \mathrm{d} heta \mathrm{d}k$ ((9.33)
P I linear nonlinear A have will see later, mis result gives	$= 2\pi \int_{0}^{\infty} \int_{0}^{\pi} \xi(r) \exp(ikr\cos\theta) r^{2} d(\cos\theta) dr$	(9.34)
	$= \frac{V}{2\pi^2} \int_0^\infty P(k) \frac{\sin kr}{kr} dr$	(9.35)
$10^{-2} \frac{1}{0.01 \dots 1} \frac{1}{0.3 \dots 1} \frac{1}{.3 \dots 100 \dots 300}$ Wavenumber k (h Mpc ⁻¹) (Hamilton & Tegmark, 2002, Fig. 6)	(the last eq. is exact). For $kr < \pi$: $\sin kr/kr > 0$, while oscillation for $kr > \pi$ \implies only wavenumbers $k \lesssim r^{-1}$ contribute to amplitude on scale r .	
Structures: Quantitative Description 12	Structures: Quantitative Description	4 4
9 47		9-49
Power Spectrum: Measurements, II	Power Spectrum: Interpretation	
0.02 0.04 0.06 0.080.1 0.2 0.4	For a power law spectrum, $P(k) \propto k^n \label{eq:Power}$	(9:36)
4.5 - T full 2dFGRS	the correlation function is	
	$\xi(r) \propto \int_0^\infty rac{\sin kr}{kr} k^{n+2} d k \sim \int_0^{r/r} k^{n+2} d k \propto r^{-(n+3)}$	(9.37)
-3 MP	But the mass within a fluctuation is $M\sim ho r^3$, i.e., the mass fluctuation spectrum is	
(k) 3.5 input P(k)	$\xi(M) \propto M^{-(n+n)/2}$ and therefore the rms density fluctuation at mass scale M is	(9.38)
$\log_{10} p + \frac{1}{\Omega_m h = 0.168}$ $\log_{10} p + \frac{1}{\Omega_m h = 0.168}$	$rac{\delta b}{ ho} = \xi(M)^{1/2} \propto M^{-(n+3)/6}$	(9.39)
2.5 2.5 2.5 2.5	For $n>-3,$ the rms mass fluctuations decrease with $M\Longrightarrow$ isotropic universe on largest scales	
(Cole et al., 2005, Fig. 12)		
The galaxy-galaxy-power spectrum flattens towards small k .		

Structures: Quantitative Description

13

Structures: Quantitative Description

15

	0-50	с	5
Power Spectrum: II	nterpretation	Linear Theory, I	5
What spectra do we expect?		Structure formation = evolution of overdensity in universe with time.	
Two simple cases:		Describe density and scale factor with respect to normal expansion:	
Poisson noise: Random statistical fluctuati	ons in number of particles on	$\rho(t) = \overline{\rho}(t) \cdot (1 + \delta(t)) \tag{9}$	9.42)
scale <i>r</i> : $\delta N = \frac{\delta N}{2} = \frac{1}{2} \implies$	$\frac{\delta M}{\delta \delta} = \frac{1}{\delta \delta} \tag{9.40}$	$a(t) = \overline{a}(t) \cdot (1 - \epsilon(t)) \tag{9}$	9.43)
and therefore $n=$ 0 ($ ho\propto M$!) ("white no	ise").	M $\delta > 0 \Longrightarrow \text{Overdensity}$	
Zeldovich spectrum: defined by $n=$ 1. Th	IIS	$\epsilon > 0 \implies collapse$ Seek mathematical model for collapse of gravitating materia	ial in
$\frac{\delta ho}{\tilde{\sigma}} \propto M$	(9.41) (9.41)	expanding universe	
p will be important later		Question is similar to that used when deriving Friedmann equations.	
The Zeldovich spectrum is the spectrum expected for the contrough the horizon had the same amplitude.	ase when initial density fluctuations coming	$\dot{a}(t) = \frac{8\pi G}{3}\rho(t)a^2(t) + H_0^2(1 - \Omega_0) $ (9)	9.44)
		We will drop the explicit t dependency in the following	
Structures: Quantitative Description	16	Structure Formation	~
$k \neq h \text{ Mpc}^{-1}$		d	153
		Linear Theory, II	8
		Onset of structure formation: $\delta(t), \epsilon(t) \ll 1$ ("linear regime") \Longrightarrow Ignore all higher orders of δ and ϵ .	
1.0 (X) ² , ²		Left hand side of Friedmann:	
		$\dot{a}^2 = \left(\dot{a} - \ddot{a}\epsilon - \bar{a}\dot{\epsilon}\right)^2 = \ddot{a}^2 - 2\ddot{a}^2\epsilon - 2\ddot{a}\ddot{a}\dot{\epsilon} = \dot{a}^2 - 2\dot{a}\frac{d}{dt}\left(\bar{a}\epsilon\right) $ (9)	9.45)
0 ⁻³ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔		Right hand side of Friedmann:	
		$\frac{8\pi G}{3}\bar{\rho}(1+\delta)\bar{a}^2(1-\epsilon)^2 + H_0^2(1-\Omega_0) = \frac{8\pi G}{3}\bar{\rho}\bar{a}^2(1+\delta)(1-2\epsilon) + H_0^2(1-\Omega_0)$	161
	The measured power spectrum is	$=\frac{8\pi G}{3}\overline{\rho}\overline{a}^{2}(1+\delta-2\epsilon)+H_{0}^{2}(1-\Omega_{0}) $	9.40)
	→ Structure formation to	Therefore Eq. (9.45)=Eq. (9.46):	
$\Lambda^2(\mathbf{k})$. Abell	understand details!	$\dot{\vec{a}}^2 - 2\dot{\vec{a}}\frac{d}{dt}(\vec{a}\epsilon) = \frac{8\pi G}{3}\bar{\rho}\vec{a}^2(1+\delta-2\epsilon) + H_0^2(1-\Omega_0) \tag{9}$	9.47)
10 ⁻³ 0.0 10 ⁻³ 0.0 10 ⁻³ 0.0 • APM (strong) • APM (str		Use the Friedmann Equation for \bar{a} (Eq. 9.44) to simplify this to $2\dot{a} \cdot \frac{d}{d}(\bar{a}\epsilon) = \frac{8\pi G}{\rho \bar{a}^2 (\delta - 2\epsilon)} $ (9)	9.48)
0.01			
$k / h Mpc^{-1}$	(Peacock: 1999, Fig. 16.4)		

Structure Formation

	0-54	0-5	U U
Linear Theory, III		Linear Theory, V	3
To solve Eq. (9.48): Assume for simplicity $\Omega=$ 1, matter-dominated universe.		Better linear theory: Use linearized equations of motion from hydrodynamics.	
Matter domination $\implies \rho a^3 = \text{const.} \implies$		Detailed theory very difficult, see handout for a few ideas of what is going on	
$ar{ ho}(1+\delta)ar{a}^3(1-\epsilon)^3\simar{ ho}ar{a}^3(1-3\epsilon+\delta)\stackrel{!}{=} ext{const.}$	(9.49)	Classical approach, considering a collapsing sphere: Potential energy and kinetic energy content of sphere:	
and therefore $\epsilon=\delta/3$	(9.50)	$U = -\frac{1}{2} \int \rho(x) \Phi(x) \mathrm{d}^3 x \sim -\frac{16\pi^2}{15} G \rho^2 r^5 \text{and} T \sim \frac{c_s^2}{2} \frac{4\pi r^3 \rho}{3} \tag{9.56}$	56)
\implies Eq. (9.48) becomes $2\dot{a} \cdot \frac{d}{dt}(\bar{a}\delta) = \frac{8\pi G}{3}\bar{\rho}\bar{a}^2\delta$	(9.51)	$c_{ m s}$: speed of sound; for neutral Hydrogen, $c_{ m s}=\sqrt{5T/3m_{ m p}}.$ Sphere collapses for $ U >T,$ i.e., when	
In a $k=$ 0 universe, $\bar{a}(t)=\left(\frac{3H_0}{2}t\right)^{2/3}=:a_0t^{2/3}$	(4.72)	$2r \gtrsim \sqrt{\frac{5}{2\pi}} \sqrt{\frac{c_s^2}{G\rho}} \sim c_s \sqrt{\frac{\pi}{G\rho}} =: \lambda_1 \tag{9.5}$	57)
and because of $ ho a^3={\rm const.},$ $\tilde{ ho}(t)\propto t^{-2}=: ho_0t^{-2}$	(9.52)	$\lambda_{\rm J}$ is called the Jeans length, the corresponding mass is the Jeans mass, $M_{\rm J}=\frac{\pi}{6}\rho\lambda_{\rm J}^3$ (9.56)	58)
		$\begin{tabular}{c} Structures with $m < M_J$ cannot grow. Note that c_s is time dependent $\improx M_J$ can change with time! \end{tabular}$	
Structure Formation	m	Structure Formation	5
	9–55	8 8	
المصطلم من المصالح (1951). المصطلم من المصالح (1951).		A better derivation of the Jeans length comes from considering the evolution of a fluid in an expanding universe. Assuming that the initial density perturbations were sm we can use perturbation theory for obtaining deviations from homogeneity (=structures).	small,

Insert \bar{a} , $\bar{\rho}$ into Eq. (9.51):

$$\frac{4a_0}{3}t^{-1/3}\left(\frac{2a_0}{3}t^{-1/3}\delta + a_0t^{2/3}\dot{\delta}\right) = \frac{8\pi G}{3}\rho_0 t^{-2}a_0^2 t^{4/3}\delta$$
(9.53)

and simplify

$$t^{-2/3}\delta + t^{1/3}\dot{\delta} = 2\pi G \rho_0 t^{-2/3}\delta$$

(9.54)

(9.61) (9.62) (8.63)

(6:59) (09.60)

In a Friedmann universe, for length scales < 1/H, dynamical equations are Newtonian to first order, but we need to still use the scale factor, a(t) in the fluid equations.

 $\dot{\boldsymbol{v}} + (\boldsymbol{v}\cdot\nabla)\boldsymbol{v} = -\nabla\left(\Phi + \frac{\rho}{c}\right)$

 $\nabla^2 \Phi = 4\pi G\rho$

 $\dot{\rho}+\nabla\cdot(\rho \boldsymbol{v})=\mathbf{0}$

Continuity equation:

(9.65) (9.66) (9.67)

(9.64)

 $\Phi_0(t,r)=\frac{2\pi G\rho_0 r^2}{3} \quad ({\rm soln. \ of \ Poisson \ with } \rho={\rm const.})$

 $\rho_0(t,r)=\frac{\rho_0}{a^3(t)}$ (dilution by expansion)

 $oldsymbol{v}_{0}(t,oldsymbol{r})=rac{\dot{a}(t)}{a(t)}oldsymbol{r}$ (Hubble law)

Without perturbations (i.e., the zeroth order solution) is given by the normal Friedmann solutions:

Poisson's equation: Euler's equation:

Convert into comoving coordinates (x=r/a(t)) to get rid of the a(t)'s and write down perturbation equations:

$$\begin{split} \rho(t,x) &= \rho_0(t) + \rho_1(t) =: \rho_0(t) \left(1 + \delta(t,x)\right) \\ v(t,x) &= v_0(t,x) + v_1(t,x) \\ \Phi(t,x) &= \Phi_0(t,x) + \Phi_1(t,x) \end{split}$$

which gives

$$t\dot{\delta}+(\mathbf{1}-2\pi G
ho_{\mathbf{0}})\delta=\mathbf{0}$$

(9.55)

The general solution of Eq. (9.55) is a power-law ⇒ Growth of structure!

Since also negative PL indexes possible

⇒⇒ Some initial perturbations can be damped out!

We need a better theory to do that in detail...

 $\ddot{\delta}(t,\boldsymbol{k}) + 2\frac{\dot{\alpha}(t)}{a(t)}\dot{\delta}(t,\boldsymbol{k}) + \left(\frac{k^2c_8^2}{a^2(t)} - 4\pi G\rho_0\right)\delta(t,\boldsymbol{k}) = 0$

Inserting into hydro equations gives

Since the equations are spatially homogeneous, we can Fourier transform them to search for plane wave solutions. The general perturbation solution can then later be found by performing linear combinations of these plane waves.

where $|\delta|$, $|v_1|$, $|\Phi_1|$ small (δ is called density perturbation field).

 $\delta(t, \boldsymbol{x}) = \frac{1}{(2\pi)^3} \int \mathrm{e}^{i\boldsymbol{k}\cdot\boldsymbol{x}} \delta(t, \boldsymbol{k}) \mathrm{d}^3 \boldsymbol{k} \iff \delta(t, \boldsymbol{k}) = \int \mathrm{e}^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \delta(t, \boldsymbol{x}) \mathrm{d}^3 \boldsymbol{x}$

(89.68)

(69.69)

Structure Formation

4

		9- <u>3</u> 9	20 20
	9-56	Classical Structure Formation, II	
where the sound speed is $t_s^2=(\partial p/\partial p)$ advante. Solutions to eq. 9.69 grow or decrease depending an sign of		After t_{sc} not much happens until $T_{sc}\sim 3000{ m K}$	
$\kappa_{\rm J} = \left(\frac{\kappa^2 \xi_{\rm J}}{a^2(t)} - 4\pi G\rho_0\right)$	(9.70)	→ recombination	
Thus, growth is only possible for $k > k_3$ where $k_3 = \sqrt{\frac{4\pi G \rho_0 r^2(t)}{c_2^2}}$	(9.71)	\Longrightarrow Sound speed drops dramatically (radiation and matter decouple):	
or, in terms of physical wavelengths, $\lambda_{\rm J}=rac{2\pi a(t)}{2}e_{\rm s}/(rac{\pi}{2\pi})$	(9.72)	$c \sim \frac{kT}{c} \sim 5 \mathrm{km s^{-1}}$ (0.72)	Ĺ
NJ V C/N		mp (1000)	-
		\implies MJ drops by 10	
		$M_{\rm J,eq} = \frac{\pi \bar{\rho}}{6} \left(\frac{\pi k T_{\rm rec}}{G \bar{\rho} m_{\rm p}} \right)^{1/2} \sim 5 \times \mathbf{10^5} (\Omega_0 h^2)^{-1/2} M_{\odot} $ (9.78)	78)
		after that, M_J drops because of expansion.	
		So, in a pure matter universe: huge structures (Zeldovich pancakes) form early, and then framment at recombination — "ton-down model"	
		Problem: This is not really what has been observed (i.e., galaxy clusters are not yet fully formed,	μ,
		but galaxies are) So <i>lution:</i> Dark matter	
		Structure Formation 7	~
	;		
Classical Structure Formation, I	6- 21	9–59 Structure Formation and DM	20
Farly universe: radiation dominates:			
$c_{ m s}=c/\sqrt{3}$ and $ ho rc^2=\sigma T^4$	(9.73)	DM unaffected by radiation pressure \implies collapse of smaller structures possible \implies bottom-up	
and therefore		model	
$\lambda_{ m J, rad} = c^2 \sqrt{\pi} 3 G \sigma T^4 \propto a^2$ and $M_{ m J} \propto ho_{ m m} \lambda_{ m J, rad}^3 \propto a^3$	(9.74)	As long as DM is relativistic:	
In the early universe, the Jeans mass grows quickly:		$M_{\rm J,HDM} = \frac{\pi_{\rm r} \rho_{\rm DM}}{6} \left(\frac{\pi_{\rm cDM}}{G \rho_{\rm DM}} \right) $ (9.79)	(62
At times of realistics - methods - and the international to the second		Hot Dark Matter: $c_{ m HDM} \sim c/\sqrt{3}$	
		Cold Dark Matter: $c_{ ext{CDM}} \ll c/\sqrt{3}$	
$ ho_{ m m}= ho_{ m rad}=\sigma I_{ m eq}^{ m m}/c^{2}$	(9.75)	Standard CDM Scenario:	
and $M_{\rm J}(t_{\rm eq}) = rac{\pi^{5/2}}{2} rac{c^4}{c^{3/2}} rac{1}{4^{1/2}} rac{3.6 imes 10^{16} (\Omega_0 h^2)^{-2} M_{\odot}}{(27^{1/2})^{1/2}}$	(9.76)	 DM cools long before t_{rec} CDM structures form, M_J about galaxy mass, while baryons coupled to radiation ⇒ stays 	
$18\sqrt{3} G^{-7/2} G^{-7/2} I_{eq}$ (1/1eq) ² assuming $1 + z_{es} = 240000 c_h^2$		smooth	
accuming 1 - 26q = 270002004 .		 trec: matter decouples, rails in DM gravity wells 	
→ much larger than mass in galaxy cluster (\sim mass or (ou mpc) ⁻ -cube) Overdense regions with $m < M_{Jrad}$ are smoothed out by the radiation coupling to matter.		CDM "seeds" structures!	
Much larger structures also cannot grow since λ is larger than horizon radius \Longrightarrow Mass spectrum o	of possible	Gives not exactly observed power spectrum	

Structure Formation

Structure Formation

ဖ

ω