

Classical Cosmology

To understand what universe we live in, we need to determine observationally the following numbers:

1. The Hubble constant, H_0

 \implies Requires distance measurements.

2. The current density parameter, Ω_0

 \implies Requires measurement of the mass density.

3. The cosmological constant, Λ

 \implies Requires acceleration measurements.

4. The age of the universe, t_0 , for consistency checks

 \implies Requires age measurements.

The determination of these numbers is the realm of classical cosmology.

First part: Distance determination and H_0 !

Classical Cosmology

Introduction, I

Distances are required for determination of H_0 .

 \implies Need to measure distances out to \sim 200 Mpc to obtain reliable values.

To get this far: cosmological distance ladder.

- 1. Trigonometric Parallax
- 2. Moving Cluster
- 3. Main Sequence Fitting
- 4. RR Lyr
- 5. Baade-Wesselink
- 6. Cepheids
- 7. Light echos
- 8. Luminosity function of planetary nebulae
- 9. Brightest Stars
- 10. Type la Supernovae
- 11. Tully-Fisher
- 12. D_n - σ for ellipticals
- 13. Brightest Cluster Galaxies
- 14. Gravitational Lenses

The best reference is

ROWAN-ROBINSON, M., 1985, The Cosmological Distance Ladder, New York: Freeman

Pathways to Extragalactic Distances

(Jacoby et al., 1992, Fig. 1)

Units

Basic unit of length in astronomy: Astronomical Unit (AU).

Colloquial Definition: 1 AU=mean distance Earth–Sun.

Measurement: (Venus) radar ranging,

interplanetary satellite positions,

 $\chi^{\rm 2}$ minimization of $N\mbox{-body}$ simulations of solar system

 $1\,\mathrm{AU}\sim149.6 imes10^{6}\,\mathrm{km}$

In the astronomical system of units (IAU 1976), the AU is defined via Gaussian gravitational constant (k). Acceleration:

$$\ddot{\mathbf{r}} = -\frac{k^2(\mathbf{1}+m)\mathbf{r}}{r^3}$$

where k = 0.01720209895, leading to

 $a_{\rm th} =$ 1.00000105726665, and

 $1 \text{ AU}=1.4959787066 \times 10^{11} \text{ m}$ (Seidelmann, 1992).

Reason for this definition: k much better known than G.

UWarwick Distance Determination

after Rowan-Robinson (1985, Fig. 2.1) Motion of Earth around Sun \implies Parallax produces apparent motion by amount

$$\tan \pi \sim \pi = \frac{r_{\text{d}}}{d} \tag{5.1}$$

 π is called the trigonometric parallax, and *not* 3.141!

If star is at ecliptic latitude b, then ellipse with axes π and $\pi \sin b$.

Measurement difficult: $\pi \leq 0.76''$ (α Cen). Define unit for distance:

Parsec: Distance where 1 AU has $\pi = 1''$.

 $1 \text{ pc} = 206265 \text{ AU} = 3.08 \times 10^{18} \text{ cm} = 3.26 \text{ ly}$

UWarwick

Trigonometric Parallax, II

Best measurements to date: Hipparcos satellite (with Tübingen participation).

- ullet systematic error of position: ${\sim}0.1\,{
 m mas}$
- effective distance limit: 1 kpc
- standard error of proper motion: \sim 1 mas/yr
- broad band photometry
- narrow band: B V, V J
- magnitude limit: 12
- complete to mag: 7.3–9.0

Results available at

http://astro.estec.esa.nl/Hipparcos/:

Hipparcos catalogue: 120000 objects with milliarcsecond precision.

Tycho catalogue: 10⁶ stars with 20–30 mas precision, two-band photometry

Distance Determination

5 - 7

Trigonometric Parallax, III

Plans for the future: GAIA (ESA mission, \sim 2010–2012):

6

Problem: determination of convergent point Less error prone: moving cluster method = rate of variation of angular diameter of cluster:

$$\dot{ heta}d = heta v_{
m r}$$
 (5.4)

Observation of proper motions gives

$$\frac{\dot{\theta}}{\theta} = \frac{\mathrm{d}\mu_{\alpha}}{\mathrm{d}\alpha} = \frac{\mathrm{d}\mu_{\delta}}{\mathrm{d}\delta}$$
(5.5)

where $\mu_{\alpha,\delta}$ proper motion in α and δ , and from Eq. (5.4),

$$d = v_{\rm r} \, \frac{\dot{\theta}}{\theta}$$
 (5.6)

 v_{r} from spectroscopical radial velocity measurements.

Distance Determination

Warwick

Source: ESA

Application: Distance to Hyades.

Tip of "arrow": Position of stars in 100000 a. *Moving cluster (Hanson):* DM \sim 3.3.

Hipparcos: geometric distance to Hyades is $d = 46.34 \pm 0.27$ pc, i.e., DM = 3.33 ± 0.01 mag \implies Moving cluster method only of historic interest.

UWarwick

Interlude

Parallax and Moving Cluster: geometrical methods.

All other methods (exception: light echoes): standard candles.

Requirements for standard candles (Mould, Kennicutt, Jr. & Freedman, 2000):

- 1. Physical basis should be understood.
- 2. Parameters should be measurable objectively.
- 3. No corrections ("fudges") required.
- 4. Small intrinsic scatter (\implies requiring small number of measurements!).
- 5. Wide dynamic range in distance.

Magnitudes, I

Assuming isotropic emission, distance and luminosity are related ("inverse square law") \implies luminosity distance:

$$F = \frac{L}{4\pi d_{\rm L}^2} \tag{5.7}$$

where F is the measured flux (erg cm⁻² s⁻¹) and L the luminosity (erg s⁻¹). Definition also true for flux densities, I_{ν} (erg cm⁻² s⁻¹ Å⁻¹).

The magnitude is defined by

$$m = A - 2.5 \log_{10} F$$
 (5.8)

where A is a constant used to define the zero point (defined by m = 0 for Vega).

For a filter with transmission function ϕ_{ν} ,

$$m_i = A_i - 2.5 \log \int \phi_
u F_
u \, \mathrm{d}
u$$
 (5.9)

where, e.g., i = U, B, V.

Distance Determination

Warwick

Magnitudes, II

To enable comparison of luminosities: define

absolute magnitude M = magnitude at distance 10 pc

Thus, since
$$m = A - 2.5 \log(L/4\pi d^2)$$
,
$$M = m - 5 \log\left(\frac{d_{\rm L}}{10\,{\rm pc}}\right) \qquad (5.10)$$

The difference m - M is called the distance modulus, μ_0 :

$$\mu_0 = \mathsf{D}\mathsf{M} = m - M = 5\log\left(\frac{d_\mathsf{L}}{10\,\mathsf{pc}}\right) \quad (5.11)$$

Often, distances are given in terms of m - M, and not in pc.

UWarwick

dominated by Zero Age Main Sequence (ZAMS).

 \implies Measure HRD (or Color Magnitude Diagram; CMD), shift magnitude scale until main sequence aligns \implies distance modulus.

<u>UWarwick</u>

Caveats:

- 1. Location of ZAMS more age dependent than expected (van Leeuwen, 1999).
- 2. interstellar extinction $\implies \mu_0 = \mu_V A_V$, where μ_V , A_V DM/extinction measured in V-band.
- 3. metals: line blanketing (change in stellar continuum due to metal absorption lines, see figure) \implies Changes color \implies horizontal shift in CMD.

van den Bergh (1977): $Z_{\text{Hyades}} \sim 1.6 Z_{\odot}$, while other open clusters have solar metallicity \implies Cepheid DM were overestimated by 0.15 mag.

4. identification of unevolved stars crucial (evolution to larger magnitudes on MS during stellar life).

Currently: distances to \sim 200 open clusters known (Fenkart & Binggeli, 1979). Distance limit \sim 7 kpc.

UWarwick

ESO PR Photo 06a/99 (18 February 1999)

Globular Cluster NGC 6712

(M68, Straniero, Chieffi & Limongi, 1997, Fig. 11) Globular clusters: HRD different from open clusters:

- population II $\Longrightarrow Z \ll Z_{\odot}$
- evolved

Use theoretical HRDs (isochrones) to obtain distance.

For distant clusters: MS unobservable \implies position of horizontal branch.

UWarwick

Baade-Wesselink

Basic principle (Baade, 1926): Assume black body \Longrightarrow Use color/spectrum to get $kT_{\rm eff} \Longrightarrow$ Emitted intensity is Planckian \Longrightarrow Observed Intensity is $I_{\nu} \propto \pi r_*^2 B_{\nu}$.

Radius from integrating velocity profile of spectral lines:

$$R_2 - R_1 = p \int_1^2 v \, \mathrm{d}t$$
 (5.12)

(*p*: projection factor between velocity vector and line of sight).

Wesselink (1947): Determine brightness for times of same color \implies rather independent of

knowledge of stellar spectrum (deviations from B_{ν}).

Stars: Calibration using interferometric diameters of nearby giants.

Baade-Wesselink works for pulsating stars such as RR Lyr, Cepheids, Miras, and expanding supernova remnants.

M2: Lee & Carney (1999, Fig. 2)

RR Lyrae variables: Stars crossing instability strip in HRD \implies Variability ($P \sim 0.2...1$ d)

 \implies RR Lyr gap (change in color!).

Absolute magnitude of RR Lyr gap:

 $M_{\rm V}=$ 0.6, $M_{\rm B}=$ 0.8, i.e., $L_{\rm RR}\sim$ 50 L_{\odot}).

 ${\cal M}$ determined from ZAMS fitting, statistical parallax, and Baade-Wesselink method.

UWarwick

Lightcurve (here: Lee & Carney, 1999, Fig. 5) shows characteristic color variations over pulsation (temperature change!), and a fast rise, slow decay behavior.

5 - 20

RR Lyr in GCs show bimodal number distribution: RRab with P > 0.5 d and most probable period of $P_{ab} \sim 0.7$ d, and RRc, with $P < 0.5 \,\mathrm{d}$ and $P_{\rm c} \sim 0.3 \,\mathrm{d}$ (metallicity effect).

Caveat: M dependent on metallicity: larger for higher Z(i.e., metal-rich RR Lyr are *fainter*, i.e., difference in RR Lyr from population I and II).

Works out to LMC and other dwarf galaxies of local group, however, used mainly for globular clusters.

Narwick

0.2 BV 0.4 0,6

-0,2 0,0 0.2

0.4

Phase

0.6

0.8

1.0

1.2

Interlude, I

Previous methods: Selection of methods for distances within Milky Way (and Magellanic Clouds): Basis for extragalactic distance scale.

Primary extragalactic distance indicators: Distance can be calibrated from observations *within* milky way or from theoretical grounds.

Primary indicators usually work within our neighborhood (i.e., out to Virgo cluster at 15–20 Mpc).

Examples: Cepheids, light echos,...

Secondary extragalactic distance indicators: Distance calibrated from primary distance indicators.

Examples: Type Ia SNe, methods based on integral galaxy properties.

source: http://anzwers.org/free/universe/galgrps.html

Interlude, III

To get a feel for the distances in our "neighborhood":

50 kpc: LMC, SMC, some other dwarf galaxies

700 kpc: M31 (Andromeda)

Palomar Schmidt

Interlude, IV

2–3 Mpc: Sculptor, M81 group (groups similar to local group: a few large spirals, plus smaller stuff).

NGC 300 (Sculptor; Laustsen, Madsen, West, 1991)

5–7 Mpc: M101 group ("pinwheel galaxy"). Important because of high L.

source: http://anzwers.org/free/universe/200mill.html

Cepheids: Luminous stars ($L \sim 1000 L_{\odot}$) in instability strip (He II–He III ionization) with large amplitude variation, $P \sim 2...150$ d (easily measurable). Recent review: Feast (1999).

UWarwick

STScl PR94-49

Cepheids, IV

Physics of Period-Luminosity-Color relation: Star pulsates such that outer parts remain bound:

$$\frac{1}{2} \left(\frac{R}{P}\right)^2 \lesssim \frac{GM}{R} \implies \frac{M}{R^3} \propto P^{-2}$$
 (5.13)

where P period. Therefore:

$$P \propto \rho^{-1/2} \iff P \rho^{1/2} = Q$$
 (5.14)

(*Q*: pulsational constant, $\rho \propto MR^{-3}$ mean density). But Radius *R* related to luminosity *L*:

$$L = 4\pi R^2 \sigma T^4 \implies R \propto L^{1/2} T^{-2}$$
 (5.15)

Inserting everything into Eq. (5.14) gives:

$$PL^{-3}T^3 = \text{const.}$$
 (5.16)

$$\iff \log P - 3 \log L + 3 \log T = \text{const.}$$
 (5.17)

But:

bolometric magnitude: $M_{\rm bol} \propto -\log L$; colors: ${\sf B} - {\sf V} \propto \log T$ such that

$$c_1 \log P + c_2 M_{\text{bol}} + c_3 (\mathsf{B} - \mathsf{V}) = \text{const.}$$
 (5.18)

where $c_{1,2,3}$ calibration constants.

Cepheids, V

Calibration: Need slope and zero point of PLC. Slope is easy: Observations of nearby galaxies (e.g., open clusters in LMC, see previous slide). Zero point is difficult:

- Cepheids in galactic clusters, distance to these via ZAMS fitting => problematic due to age dependency of ZAMS.
- Hipparcos: geometrical distances => problematic due to low SNR (resulting in 9% systematic error.
- Baade-Wesselink using IR info (low metallicity dependence).

Typical relations (Mould et al., 2000, 32 Cepheids):

$$M_{\rm V} = -2.76 \log P - 1.40 + C(Z)$$

$$M_{\rm I} = -3.06 \log P - 1.81 + C(Z)$$
(5.19)

The metallicity (color) dependence is roughly

$$(m - M)_{\rm true} = (m - M)_{\rm PL} - \gamma \log Z / Z_{\rm LMC}$$
 (5.20)

where $\gamma = -0.11 \pm 0.03 \text{ mag/dex}$ (*Z*: metallicity) (=Cepheids with larger *Z* are fainter).

<u>UWarwick</u>

Cepheids, VI

Notes:

- 1. Pulsational constant $Q = Q(\rho, P)$? \implies possible deviation from PLC, especially at high luminosity \implies adds uncertainty at large distances.
- 2. $M_{\rm V}$ depends on metallicity (LMC Cepheids are bluer [$Z_{\rm LMC} < Z_{\odot}$]), but γ very uncertain. For V and I magnitudes, most probably $\delta(m - M)_0 / \delta[{\rm O}/{\rm H}] \lesssim -0.4 \, {\rm mag} \, {\rm dex}^{-1}$, however, others find +0.75 mag dex⁻¹, see Ferrarese et al. (2000) for details...
- 3. Stellar evolution unclear (multiple crossings of instability strip possible).

W Vir Stars

W Vir stars, also called type II Cepheids = "little brother of Cepheids" (present in globular clusters).

Less luminous than normal Cepheids, similar PLC relation, first confused with Cepheids \implies Cause for early thoughts of much smaller universe. Cause for early confusion with Cepheids by Hubble (realization vastly increased assumed size of universe).

Light echos, I

Light echo: specialized way to determine distance to LMC using Supernova 1987A.

STScl PR94-22

February 1987: Supernova in Large Magellanic Cloud. 87 d after explosion: Ring of ionized C and N around SN \implies Excitation of C, N in ring-like shell (ejecta from stars equator during red giant phase?). Observed size: 1.66" × 1.21"

UWarwick

Light echos, II

Assuming ring-geometry: direct geometrical determination of distance to LMC possible:

Time delay SN – close side of ring:

$$ct_1 = r(1 - \sin i)$$

= 86 ± 6 d (5.21)

Time delay SN – far side of ring:

$$ct_2 = r(1 + \sin i)$$

= 413 ± 24 d (5.22)

The radius is (Eq. 5.21+Eq. 5.22):

$$r = c \, \frac{t_1 + t_2}{2} = 250 \pm 12 \, \text{lt d}$$
 (5.23)

and the inclination is (Eq. 5.21+Eq. 5.22):

$$\sin i = \frac{t_2 - t_1}{t_1 + t_2} \implies i \sim 41^{\circ}$$
 (5.24)

From ring-geometry: $\cos i = 1.21''/1.66'' \Longrightarrow i \sim 43^{\circ}$). Thus from angular size of ring:

$$1.66'' = \frac{r\cos i}{d} \implies d = 52 \pm 3 \,\mathrm{kpc} \tag{5.25}$$

Distance Determination

/arwick

Large Magellanic Cloud (LMC) distance: "anchor point" of extragalactic distance scale.

After Gaia Science Workgroup

Problems that are still not understood:

- Strong dependence on Hipparcos calibration. Values between 18.7 \pm 0.1 (Feast & Catchpole) and 18.57 \pm 0.11 (Madore & Freedman) obtained.
- Eclipsing binaries and red clump stars: $\mu_{LMC} \sim 18.23$ (Mould, Kennicutt, Jr. & Freedman, 2000) \implies Inconsistent with other methods!?!

Currently, the distance to the LMC is less well known than desirable.

UWarwick

PN Luminosity Function, III

Caveats: Effects of metallicity, population age, parent galaxy most probably small, but

- Contamination by H II regions (but distinguish using H α /[O III] ratio.
- Background emission-line galaxies at z = 3.1
- intracluster PNe (i.e., PNe outside galaxies)

The VLT Looks Deep into a Spiral Galaxy

ESO PR Photo 20/98 (23 June 1998)

O ESO European Southern Observatory

M83

Brightest Stars, II

Brightest Stars= O, B, A supergiants, absolute magnitudes usable in local group, large scatter. Brightest stars possible: upper limit to stellar luminosity due to mass loss in supergiants

Possible Improvement: Strength of Balmer series lines. H α and H β appear biased (class of supergiants with anomalously strong Balmer lines?).

Problems:

- Contamination by foreground halo stars
 ⇒ Choose stars with unusual color (rare, i.e. less foreground contamination): B V < 0.4 or B V > 2.0 ⇒ Tip of Red Giant Branch
- Internal extinction.
- Scatter in max. $L \Longrightarrow$ Average over brightest N stars (Sandage, Tammann: N = 3).
- Metallicity dependence.

UWarwick Distance Determination

(MW GCs, Abraham & van den Bergh, 1995, Fig. 1) From Virgo and Fornax Cepheid distances (Ferrarese et al., 2000):

$$M_{
m T,V} = -$$
7.60 \pm 0.25 mag (5.29)

Caveats:

- 1. $M_{\rm T}$ depends on luminosity and type of host galaxy (GC of dwarf galaxies weaker by \sim 0.3 in V).
- 2. Metallicity of galaxy cluster influences $M_{\rm T}$.
- 3. Measurement difficult (need the weak GCs!).
- 4. Large scatter in data \implies Method rather unreliable.

UWarwick

Surface Brightness Fluctuations, I

For early type galaxies: Assume N stars in picture element (pixel), with average flux f. \implies Mean pixel intensity:

$$\mu = N f$$
 (5.30)

5–44

 μ independent of distance, since $N\propto r^2$ and $f\propto r^{-2}.$

(Ajhar et al., 1997, Fig. 3d)

Standard Deviation (Poisson):

$$\sigma = \sqrt{N} f \propto r^{-1} \tag{5.31}$$

Therefore:

$$f = \frac{\sigma^2}{\mu} = \frac{L}{4\pi r^2}$$
 (5.32)

which gives the distance r.

Review: Blakeslee, Ajhar & Tonry (1999).

Complication: Adjacent pixels not independent (point spread function of telescope!)

 \implies Use radial power spectrum to obtain σ^2 and μ .

JWarwick

(Ferrarese et al., 2000, Fig. 5)

Luminosity of galaxy dominated by Red Giant Branch stars \implies Strong wavelength and color dependence \implies Primary calibration: I-band plus broad-band color dependency to give standard candle.

Often also used: HST WFPC2 plus F814W filter (close to I-band),

 $M_{\rm F814W} = (-1.70 \pm 0.16)$

 $+ (4.5 \pm 0.3) \left[(V - I)_0 - 1.15 \right]$ (5.33)

Works out to \sim 70 Mpc with HST.

UWarwick

5-46

(Nova in M31, Arp, 1956, p. 18)

"classical nova" = explosion on surface of white dwarf

Novae only in binary systems \implies slow accretion of material onto WD \implies outer skin reaches $M_{\rm crit}$ for fusion \implies explosion \implies ejection of $10^{-6} \dots 10^{-4} M_{\odot}$ with $v \sim 500$ km/s Explosion produces characteristic lightcurve.

(van den Bergh & Pritchet, 1986, Fig. 1).

Strong scatter in lightcurves (higher $L_{\max} \Longrightarrow$ faster decline, but typically $\sim 3 \times$ brighter than Cepheids), but good Correlation luminosity vs. decline timescale (t_i , time to reach $m(t_i) = m_{\max} + i$). Calibration: galactic novae.

UWarwick Distance Determination

SN1994d (HST WFPC)

Supernovae have luminosities comparable to whole galaxies: $\sim 10^{51}$ erg/s in light, $100 \times$ more in neutrinos.

(Filippenko, 1997, Fig. 1); t: time after maximum light; τ : time after core collapse; P Cyg profiles give $v \sim 10000 \,\mathrm{km \, s^{-1}}$

Rough classification (Minkowski, 1941): **Type I:** no hydrogen in spectra; subtypes Ia, Ib, Ic **Type II:** hydrogen present, subtypes II-L, II-P

Note: pre 1985 subtypes Ia, Ib had different definition than today \implies beware when reading older texts.

UWarwick

⁽Filippenko, 1997, Fig. 3)

Light curves of SNe I all very similar, SNe II have much more scatter.

SNe II-L ("linear") resemble SNe ISNe II-P ("plateau") have const. brightness to within 1 mag for extended period of time.

(SN 1998bu in M96, Jha et al., 1999, Figs. 2 and 4)

(SN 1998bu, Jha et al., 1999, Fig. 6)

90 cm CTIO, N. Suntzeff

Type la Supernovae, VI

Clue on origin from supernova statistics:

- SNe II, Ib, Ic: never seen in ellipticals; rarely in S0; generally associated with spiral arms and H II regions.
- \implies progenitor of SNe II, lb, lc: massive stars $(\gtrsim 8 M_{\odot}) \Longrightarrow$ core collapse
 - SNe la: all types of galaxies, no preference for arms.
- progenitor of SNe Ia: accreting carbon-oxygen white dwarfs, undergoing thermonuclear runaway

Type Ia Supernovae, VII

SN Ia = Explosion of CO white dwarf when pushed over Chandrasekhar limit (1.4 M_{\odot}) (via accretion?).

 \implies Always similar process \implies Very characteristic light curve: fast rise, rapid fall, exponential decay with half-time of 60 d.

60 d time scale from radioactive decay $\rm Ni^{56} \rightarrow \rm Co^{56} \rightarrow Fe^{56}$ ("self calibration" of lightcurve if same amount of $\rm Ni^{56}$ produced everywhere).

Calibration: SNe Ia in nearby galaxies where Cepheid distances known. At maximum light:

 $M_{\rm B} = -18.33 \pm 0.11 + 5 \log h_{100}$ (5.34)

($L\sim 10^{9...10}\,L_{\odot}$).

Intrinsic dispersion: $\leq 0.25 \text{ mag}$ (possibly due to size of clusters analyzed?!?)

Observable out to 1000 Mpc

UWarwick

⁽Phillips et al., 1999, Fig. 8)

Caveats:

- 1. Are they *really* identical? \implies history of pre-WD star?
- 2. Correction for extinction in parent galaxy difficult.
- 3. Baade-Wesselink for calibration Eq. (5.34) depends crucially on assumed (B V)- T_{eff} relation.
- 4. Some SN lae spectroscopically peculiar \Longrightarrow Do not use these!
- 5. Decline rate and color vary, but max. brightness and decline rate correlate (see figure).

UWarwick

Lightcurves of Hamuy et al. SN Ia sample (18 SNe discovered within 5 d past maximum, with $3.6 < \log cz < 4.5$, i.e., z < 0.1, after correction of systematic effects and time dilatation (Kim et al., 1997).

Type la Supernovae, X

Recalibration of SN Ia distances with Cepheids gives (Gibson et al., 2000):

$$\log H_0 = 0.2 \left\{ M_{\rm B}^{\rm max} - 0.720(\pm 0.459) \\ \cdot \left[\Delta m_{{\rm B},15,t} - 1.1 \right] - 1.010(\pm 0.934) \\ \cdot \left[\Delta m_{{\rm B},15,t} - 1.1 \right]^2 + 28.653(\pm 0.042) \right\}$$
(5.35)

where

$$\Delta m_{{\rm B},15,t} = \Delta m_{{\rm B},15} + 0.1 E({\rm B-V})$$
 (5.36)

where

 $\Delta m_{\rm B,15}$: observed 15 d decline rate, $E({\rm B-V})$: total extinction (galactic+intrinsic).

Eq. (5.35) valid for B-band, equivalent formulae exist for V and I.

Overall, the calibration is good to better than 0.2 mag in B.

Distance Determination

5 - 57

(Sakai et al., 2000, Fig. 1)

Tully-Fisher relation for spiral galaxies: Width of 21 cm line of H correlated with galaxy luminosity:

$$M = -a \log\left(\frac{W_{20}}{\sin i}\right) - b \tag{5.37}$$

where W_{20} : 20% line width (km/s; typically $W_{20} \sim 300$ km/s), *i* inclination angle. For the B- and I-Bands (Sakai et al., 2000):

	В	I
а	$7.97{\pm}~0.72$	9.24± 0.75
b	19.80 ± 0.11	21.12 ± 0.12

UWarwick

Tully-Fisher, II

Qualitative Physics: Line width related to mass of galaxy: $W/2 \sim V_{\rm max}$, where $V_{\rm max}$ max. velocity of rotation curve

 \implies Assume M/L = const. (good assumption) \implies width related to luminosity.

Detailed physical basis unknown. Might be related to galaxy formation in CDM models ("hierarchical clustering", see later).

I-band is better (less internal extinction).

Caveats:

- 1. Determination of inclination i.
- 2. Influence of turbulent motion within galaxy.
- 3. Constants dependent on galaxy type (Sa and Sb similar, Sc more luminous by factor of \sim 2).
- 4. Optical extinction.
- 5. Intrinsic dispersion \sim 0.2 mag.
- 6. Barred Galaxies problematic.

D_n - σ , II

The Faber-Jackson law is a specialized case of the more general D_n – σ -relation:

The intensity profile of an elliptical galaxy is given by de Vaucouleurs' $r^{1/4}$ law:

$$I(r) = I_0 \exp\left(-(r/r_0)^{1/4}\right) \implies L = \int I \propto I_0 r_0^2$$
(5.40)

Because of the virial theorem ($E_{\rm kin}=-E_{\rm pot}/2$):

$$\frac{1}{2}m\sigma^2 = G\frac{mM}{r_0} \quad \Longleftrightarrow \quad \sigma^2 \propto \frac{M}{r_0} \tag{5.41}$$

where σ : velocity dispersion. Assume mass-to-light ratio

$$M/L \propto M^{lpha}$$
 (5.42)

($\alpha \sim$ 0.25). and use r_0 from Eq. (5.40) to obtain

$$L^{1+\alpha} \propto \sigma^{4-4\alpha} I_0^{\alpha-1} \tag{5.43}$$

This is called the "fundamental plane" relationship (Dressler et al., 1987).

UWarwick

D_n - σ , III

Observationally easier: Instead of inserting r_0 , I_0 , measure diameter D_n of aperture to reach some mean surface brightness (typically sky brightness, 20.75 mag arcsec⁻² in B), and use calibration. *Note:* Assumptions are

- 1. M/L same everywhere.
- 2. ellipticals have same stellar population everywhere

Calibration paper: Kelson et al. (2000).

Brightest Cluster Galaxies

For very large distances: use brightest cluster galaxies as indicators.

Assumption: Galaxy clusters are similar, brightest galaxy has similar brightness.

Calibration: Close clusters.

10 close galaxy clusters: brightest galaxy has

$$M_{\rm V} = -22.82 \pm 0.61$$
 (5.44)

Problems:

- Cosmological evolution (e.g., galaxy cannibalism)
- Scatter in brightest galaxy large \implies Use 2nd, 3rd brightest, or average brightest N galaxies.
- \implies The method of brightest cluster galaxies should not be used anymore.

Path to H_0

To obtain H_0 : need two things:

- 1. distances, and
- 2. redshifts

Distances:

Hubble Space Telescope Key Project on Extragalactic Distance Scale.

Summary paper: Freedman et al. (2001), there are a total of 29 papers on the HST key project!

Strategy:

- 1. Use high-quality standard candle: Cepheid variables as primary distance calibrator.
- 2. Calibrate secondary calibrators that work out to $cz = 10000 \text{ km s}^{-1}$:
 - Tully-Fisher,
 - Type la Supernovae,
 - Surface Brightness Fluctuations,
 - Fundamental-plane for Ellipticals.
- 3. Combine uncertainties from these methods.

Redshift determination is obviously trivial compared to distance determination...

UWarwick

Velocity Field, I

Before determining H_0 : correct for influence of velocity field (cluster motion wrt. comoving coordinates).

The observed redshift is given by

$$1 + z = (1 + z_{R}) \left(1 - \frac{v_{0}}{c} + \frac{v_{G}}{c} \right)$$
 (5.45)

where

 $\upsilon_0\mbox{:}$ observer's radial velocity in direction of galaxy

 $\upsilon_{\rm G}\text{:}$ radial velocity of the galaxy, difficult to find

 z_{R} : cosmological redshift

Older galaxy catalogues often attempt to correct the measured values of z to produce "corrected redshifts", e.g., by setting $v_{\rm G} = 0$ and

$$1 + z = (1 + z_{\rm R}) \left(1 + \frac{v_0}{c} \right) \sim 1 + z_{\rm R} - \frac{v_0}{c}$$
 (5.46)

and thus

$$z_{\mathsf{R}} \sim z + \frac{v_0}{c} \tag{5.47}$$

since v_0 was up to COBE not well known \implies introduces unnecessary problems \implies correction not used anymore in recent redshift surveys!

see Harrison & Noonan (1979) for details

UWarwick

(Bennett et al., 1996, COBE DMR;)

 v_0 is easy to find \implies Measure velocity of Earth with respect to 3 K radiation. COBE finds speed of (369.1 ± 2.6) km/s, such that

$$v_0 = 370 \,\mathrm{km}\,\mathrm{s}^{-1} \cdot \cos\theta_{\mathrm{CMB}}$$
 (5.48)

where $\theta_{\text{CMB}} = \angle(\mathbf{v}, \mathbf{v}_{\text{CMB}}) \text{, and } \mathbf{v}_{\text{CMR}} \text{ points towards}$

 $(l, b) = (264.26^{\circ} \pm 0.33^{\circ}, 48.22^{\circ} \pm 0.13^{\circ})$ $(\alpha, \delta)_{\mathsf{J2000.0}} = (\mathsf{11^h12.2^m} \pm 0.8^{\mathsf{m}}, -7.06^{\circ} \pm 0.16^{\circ})$

in constellation Crater.

Velocity comes from measured Dipole temperature anisotropy of $\Delta T = 3.353 \pm 0.024$ mK of 3K black-body spectrum of $T = 2.725 \pm 0.020$ K, using $\Delta T/T = v/c$.

UWarwick

The constellation Crater ("Becher") in Johan Elert Bode's Sternatlas (after Slawik/Reichert, Atlas der Sternbilder, Spektrum, 2004)

Two major velocity components:

- 1. Virgocentric infall (known since mid-1970s)
- 2. Motion towards great attractor ("Seven Samurai", 1980)

plus virialized galaxy motions within clusters.

General analysis: build maximum likelihood model of velocity field including above components *plus* Hubble flow. See Tonry et al. (2000) for details.

UWarwick

Decomposition of velocity field: (Mould et al., 2000, Tab. A1, note that Tonry et al. 2000 find slightly different values)

	$lpha_{ extsf{1950.0}}$	$\delta_{1950.0}$	$v ({\rm km} {\rm s}^{-1})$
Virgo	$12^{ m h}28^{ m m}$	$+12^{\circ}40'$	957
GA	$13^{ m h}20^{ m m}$	$+44^{\circ}00'$	4380
Shapley	$13^{ m h}30^{ m m}$	$+31^{\circ}00'$	13600

(v wrt. center of local group; *not* taking Hubble flow into account!).

UWarwick

H from HST

Freedman et al. (2001, Fig. 1)

To obtain H_0 :

1. Determine d with Cepheids and HST

2. Determine "v", corrected for local velocity field

3. Draw Hubble-diagram

4. Regression Analysis $\implies H_0$

Value from HST Key Project:

$$H_0 = 75 \pm 10 \, \rm km/s/Mpc$$

(5.49)

UWarwick

(SN la Hubble relations; left: full sample, middle: excluding strongly reddened SN lae, right: same as middle, correcting for light-curve shape Freedman et al., 2001, Fig. 2)

Cepheids alone: nearby \implies systematic uncertainty due to local flow correction and small overall $v \implies$ use secondary candles to get to larger distances.

Example above: magnitude-redshift diagram, analoguous to Hubble diagram ($m \propto -5 \log I$, and $I \propto 1/r^2 \propto 1/z^2$ because of Hubble $\Longrightarrow m \propto \log cz$).

⁽Mould et al., 2000, Fig. 5)

Major systematic uncertainty in current H_0 value: zero-point of Cepheid scale, i.e., distance to Large Magellanic Cloud.

Despite these problems:

 \implies All current values approach

 $\sim 70\, km\, s^{-1}\, Mpc^{-1}$, with uncertainty $\sim \! 10\%$

 H_0 controversy is over

For larger distances: **Deviations from**

Hubble-Relation!

Before we understand why: Understand Big-Bang itself!

UWarwick

Bibliography

- Abraham, R. G., & van den Bergh, S., 1995, ApJ, 438, 218
- Ajhar, E. A., Lauer, T. R., Tonry, J. L., Blakeslee, J. P., Dressler, A., Holtzman, J. A., & Postman, M., 1997, Astron. J., 114, 626
- Arp, H. C., 1956, Astron. J., 61, 15
- Bennett, C. L., et al., 1996, ApJ, 464, L1
- Blakeslee, J., Ajhar, E. A., & Tonry, J. L., 1999, in Post-Hipparcos Cosmic Candles, ed. A. H. . F. Caputo, (Dordrecht: Kluwer), 181, astro-ph/9807124
- Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D., 1989, ApJ, 339, 53
- Feast, M., 1999, PASP, 111, 775
- Fenkart, R. F., & Binggeli, B., 1979, ApJS, 35, 271
- Ferrarese, L., et al., 2000, ApJ, 529, 745
- Filippenko, A. V., 1997, ARA&A, 35, 309
- Freedman, W. L., et al., 2001, ApJ, 553, 47
- Gibson, B. K., et al., 2000, ApJ, 529, 723
- Gieren, W. P., Gómez, M., Storm, J., Moffett, T. J., Infante, L., Barnes, III, T. G., Geisler, D., & Fouqué, P., 2000, Astrophys. J., Suppl. Ser., 129, 111
- Harrison, E. R., & Noonan, T. W., 1979, ApJ, 232, 18
- Jacoby, G. H., et al., 1992, PASP, 104, 599
- Jha, S., et al., 1999, Astrophys. J., Suppl. Ser., 125, 73
- Kelson, D. D., et al., 2000, ApJ, 529, 768
- Kim, A. G., et al., 1997, ApJ, 476, L63
- Lee, J.-W., & Carney, B. W., 1999, ApJ, 117, 2868
- Mould, J., Kennicutt, Jr., R. C., & Freedman, W., 2000, Rep. Prog. Phys., 63, 763
- Mould, J. R., et al., 2000, ApJ, 529, 786
- Phillips, M. M., Lira, P., Suntzeff, N. B., Schommer, R. A., Hamuy, M., & Maza, J., 1999, Astron. J., 118, 1766
- Rowan-Robinson, M., 1985, The Cosmological Distance Ladder, (New York: Freeman)
- Sakai, S., et al., 2000, ApJ, 529, 698
- Seidelmann, P. K., (eds.) 1992, Explanatory Supplement to the Astronomical Almanac, (Mill Valley, CA: University Science Books)

Straniero, O., Chieffi, A., & Limongi, M., 1997, ApJ, 490, 425

Tonry, J. L., Blakeslee, J. P., Ajhar, E. A., & Dressler, A., 2000, ApJ, 530, 625

van den Bergh, S., & Pritchet, C. J., 1986, PASP, 98, 110