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Inflation

Previous lectures: Inflation requires

Ω = Ωm + ΩΛ = 1 (7.1)

Here,

Ωm: Ω due to gravitating stuff,

ΩΛ: Ω due to vacuum energy or other exotic stuff.

To decide whether that is true:

• need inventory of gravitating material in the

universe,

• need to search for evidence of non-zero Λ
Also search for evidence in structure formation =⇒ Later. . .

Often, express Ω in terms of a mass to luminosity

ratio.

Using canonical luminosity density of universe,

one can show (Peacock, 1999, p. 368, for the

B-band):
M

L

∣

∣

∣

∣

crit

= 1390 h
M⊙
L⊙

(7.2)
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Introduction

Constituents of Ωm:

• Radiation (CMBR)

• Neutrinos

• Baryons (“normal matter”, Ωb)

• Other, non-radiating, gravitating material

(“dark matter”)

Radiation: From temperature of CMBR, using

u = aradT
4:

Ωγh
2 = 2.480× 10−5 (7.3)

for h = 0.72, Ωγ = 4.8× 10−5

Massless Neutrinos have

Ων = 3 · 7
8

( 4

11

)4/3

Ωγ = 0.68 Ωγ (7.4)

Photons and massless neutrinos are

unimportant for todays Ω.
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Massive Neutrinos

Sudbury Neutrino Observator (SNO) and

Super-Kamiokande: Neutrinos are not massless.

From neutrino decoupling and expansion:

Current neutrino density: 113 neutrinos/cm3

per neutrino family.

In terms of Ω:

Ωνh
2 =

∑

mi

93.5 eV
(7.5)

=⇒For h = 0.75, m ∼ 17 eV sufficient to close

universe

Current mass limits:

νe: m < 2.2 eV

νµ: m < 0.19 MeV

ντ : m < 18.2 MeV

Source: http://
upp.oulu.fi/neutrino/nd-mass.html and
Particle Physics Booklet 2000

Note that solar neutrino oscillations imply ∆m between νe and νµ is
∼ 10−4 eV, i.e., most probable mass for νµ much smaller than
direct experimental limit.
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Baryons

(Burles, Nollett & Turner, 1999, Fig. 1)

Best evidence for mass in baryons, Ωb: primordial

nucleosynthesis.

Ωbh
2 = 0.02± 0.002 (7.6)
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Galaxy Rotation Curves, I

NGC 6007 (Jansen; http://www.astro.rug.nl/~nfgs/)
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Galaxy Rotation Curves, II
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Galaxy Rotation Curves, III

NGC 891 (Swaters et al., 1997, ApJ 491, 140 / Paul LeFevre, S&T Nov. 2002)
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Galaxy Rotation Curves, IV

NGC 891, KPNO 1.3 m
Barentine & Esquerdo

Stellar motion due to mass

within r:

GM(≤ r)

r2
=

v2
rot(r)

r

=⇒M(≤ r) =
v2

rotr

G

therefore:

v ∼ const. =⇒M(≤ r) ∝ r.

For disk in spiral galaxies, I(r) = I0 exp(−r/h) such that

L(r < r0) = I0

∫ r0

0
2πr exp(−r/h) dr

∝ h2 − h(r + h) exp(−r/h) (7.7)

such that for r −→∞: L(r < r0)→ const..

If M/L ∼ const. =⇒ contradiction with observations!

(would expect v ∝ r−1/2)

Result for galaxies compared to stars

M

L

∣

∣

∣

∣

galaxies
= 10 . . . 20

M⊙
L⊙

vs.
M

L

∣

∣

∣

∣

stars
= 1 . . . 3

M⊙
L⊙

Only about 10% of the gravitating matter in universe

radiates.
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Galaxy Clusters, I

For mass of galaxy clusters, make use of the

virial theorem:

Ekin = −Epot/2 (7.8)

in statistical equilibrium.
Measurement: assume isotropy, such that

〈

v2
〉

=
〈

v2
x

〉

+
〈

v2
y

〉

+
〈

v2
z

〉

= 3
〈

v2
‖
〉

(7.9)

assuming that velocity dispersion independent of mi gives:

Ekin =
1

2

∑

i

miv
2
i =

3

2
M
〈

v2
‖
〉

(7.10)

where M total mass.

If cluster is spherically symmetric =⇒ Define weighted

mean separation Rcl, such that

Epot =
GM2

Rcl
(7.11)

From Eqs. (7.10) and (7.11):

M =
3

G

〈

v2
‖
〉

Rcl (7.12)

Typical values: v‖ ∼ 1000 km s−1, R ∼ 1 Mpc.
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Assume system of particles, each with mass mi. Acceleration on particle i:

r̈ =
∑

j 6=i

Gmj(rj − ri)

|rj − ri|3
(7.13)

. . . scalar product with miri

miri · r̈i =
∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(7.14)

. . . since

1

2

d2
r

2
i

dt2
=

d

dt
(ṙi · ri) = r̈i · ri + ṙi · ri (7.15)

. . . therefore Eq. (7.14)

1

2

d2

dt2
(mir

2
i )−miṙi

2 =
∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(7.16)

Summing over all particles in the system gives

1

2

∑

i

d2

dt2
(mir

2
i )−

∑

i

miṙi
2 =

∑

i

∑

j 6=i

Gmimjri · (rj − ri)

|rj − ri|3
(7.17)

=
1

2





∑

i

∑

j 6=i

Gmimj

ri · (rj − ri)

|ri − rj |3
+
∑

j

∑

i6=j

Gmjmi

rj · (ri − rj)

|rj − ri|3





(7.18)

=
1

2





∑

i

∑

j 6=i

Gmimj

ri · rj − r
2
i

|ri − rj|3
+
∑

j

∑

i6=j

Gmjmi

rj · ri − r
2
j

|rj − ri|3





(7.19)

= −1

2

∑

i,j
i6=j

Gmimj

|ri − rj |
(7.20)

Thus, identifying the total kinetic energy, T , and the gravitational potential energy, U , gives

2T − U =
1

2

d2

dt2

∑

i

mir
2
i = 0 (7.21)

in statistical equilibrium.

Thus we find the virial theorem: T = 1
2 |U |
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Galaxy Clusters, II

Abell 370 (VLT UT1+FORS)

More detailed analysis using more complicated mass

models gives (Merritt, 1987):

M

L
∼ 350h−1 M⊙

L⊙
(7.22)

would have expected M/L = 10 . . . 20 as for galaxies

Dark matter is an important constituent in galaxy

clusters
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X-ray emission, I

X-ray emission from galaxy clusters gives mass

to higher precision:
Assume gas in potential of galaxy cluster. Hydrostatic equilibrium:

dP

dr
= −GMrρ

r2
(7.23)

Pressure from equation of state:

P = nkT =
ρkT

µmH
(7.24)

where mH: mass of H-atom, µ mean molecular weight of gas
(µ = 0.6 for fully ionized).
Eq. (7.24) gives

dP

dr
=

k

µmH

(

T
dρ

dr
+ ρ

dT

dr

)

=
ρkT

µmH

(

d log ρ

dr
+

d log T

dr

)

(7.25)

Inserting into Eq. (7.23) and solving gives

Mr = − kTr2

GµmH

(

d log ρ

dr
+

d log T

dr

)

(7.26)

Cluster gas mainly radiates by bremsstrahlung emission, with a
spectrum

ǫ(E) ∝
(me

kT

)1/2
g(E, T ) N Ne exp

(

− E

kT

)

(7.27)

where N : number density of nuclei, g(E, T ): Gaunt factor (roughly
constant).
=⇒ T from X-ray spectrum, N from measured flux =⇒Mr.
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X-ray emission, II

XMM-Newton, EPIC-pn

Result for Coma:

MB

Mtot
= 0.01 + 0.05 h−3/2 (7.28)

Technical problems:
• see through cluster =⇒ integrate over line of sight, assuming

spherical geometry.
• spherical geometry is assumed
• Gas cools by radiating was wrong (“cooling flow”)
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X-ray emission, III

(Mohr, Mathiesen & Evrard, 1999)
Generally: assume intensity profile from β-model,

I(r)

I0
=

(

1 +

(

r

Rc

)2
)−3β+1

2

(7.29)

and obtain T from fitting X-ray spectra to “shells” =⇒ technically
complicated. . .
Summary for X-ray mass determination for 45 clusters (Mohr,
Mathiesen & Evrard, 1999):

fgas = (0.07± 0.002)h−3/2 (7.30)

resulting in
Ωm = Ωb/fgas = (0.3± 0.05)h−1/2 (7.31)
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Sunyaev-Zeldovich, I

Gas in cooling flow influences CMBR by Compton

upscattering =⇒ Sunyaev-Zeldovich effect.

Derivation of following formulae follows from Fokker-Planck
equation and Kompaneets equation, see, e.g., Peacock (1999,
p. 375ff.).

Compton y-parameter (=optical depth for

Compton scattering):

y =

∫ (

kTe

mec2

)

σTNe dl (7.32)

Intensity change in Rayleigh-Jeans regime due to

Compton upscattering:

∆I

I
= −2y ∼ 10−4 (7.33)

(for typical parameters).

=⇒ Measure of
∫

NeTe dl =⇒ Mass!

T is known from X-ray spectrum.
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Sunyaev-Zeldovich, II

(decrement from 3 K background, Carlstrom et al., 2000, Fig. 3)

SZ analysis gives gas fraction for 27 clusters

fgas = (0.06± 0.006)h−3/2 (7.34)

remarkably similar to X-ray result =⇒ clumping of gas does not
influence results! (SZ only traces real gas. . . )

fgas translates to

Ωm = (0.25± 0.04) h−1 (7.35)
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Gravitational Lenses, I

α

D

D

Lens

Source

l ls

s

D

θ

~

(after Longair, 1998, Fig. 4.8a)

GR: Angular deflection due to mass M :

α̃ =
4GM

θc2
=

2

c2
· 2GM

θ
(7.36)

where θ distance of closest approach (twice

classical result).

Measurement of deflection from solar eclipse 1919: most
convincing observational evidence for reality of GR.
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Gravitational Lenses, II

Wambsganss, 1998, Fig. 3

In the small angle approximation:

θDs = βDs + α̃Dls (7.37)

defining the reduced deflection angle,

α =
Dls

Ds
α̃ (7.38)

gives the lens equation

β = θ − α = θ − Dls

DlDs
· 4GM

c2θ
= θ − 1

D
· 4GM

c2θ
(7.39)

(last expression valid for a point-mass)
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Gravitational Lenses, III

Einstein ring: source directly
behind lens,
Obtain radius by setting β = 0
in lens-equation Eq. (7.39):

θ2
E =

4GM

c2

1

D
(7.40)

i.e.,

θE = 98.9′′
(

M

1015 M⊙

)1/2

1

(D/1 Gpc)1/2
(7.41)

Mass measurements possible by observing “giant luminous

arcs” and Einstein rings.



General results of mass determinations from lensing agree with

other methods.
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Summary

So far, we have seen:

Photons:
Ωγh

2 = 2.480× 10−5 (7.42)

Neutrinos:

Ωνh
2 = 1.69× 10−5 (7.43)

Baryons: (from nucleosynthesis)

Ωbh
2 = 0.02 (7.44)

where stars:

Ωstars ∼ 0.005 . . . 0.01 (7.45)

Baryons+dark matter: (from clusters)

Ωm ∼ 0.25 (7.46)

(of which ∼ 10% in baryons)

If we believe in Ωtotal ≡ 1 =⇒ ΩΛ ∼ 0.7.
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Summary

0$77(5���(1(5*<�LQ�WKH�81,9(56(
727$/

0$77(5�&20326,7,21 '$5.�(1(5*<
1 �������

���������
0$77(5

&'0

���������
����������

������
0.1

%$5<216

������������

1(875,126

0.01

67$56
�������������

!������

0.001

(Turner, 1999, Fig. 1, numbers slightly different to ours. . . )



7–24

UWarwick

Dark Matter 1

Introduction

Clusters and galaxies: Ωm ∼ 0.3, but for baryons

Ωb ∼ 0.02 =⇒ Rest of gravitating material is dark

matter.

=⇒ Two dark matter problems:

Ωm
nonbaryonic dark matter←−−−−−−−−−−−− Ωb

baryonic dark matter←−−−−−−−−−− Ωstars

baryonic dark matter= undetected baryons:

• diffuse hot gas?

• MACHOs (Massive compact halo objects;

white dwarfs, neutron stars, black holes,

brown dwarfs, jupiters,. . . )

nonbaryonic dark matter= exotic stuff:

• massive neutrinos

• axions

• neutralinos
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Baryonic Dark Matter, I

Intra Cluster Gas:

Pro:

1. same location where the hot gas in clusters

also found,

2. structure formation suggests most baryons

are not in structures today

Contra:

1. 90% of the universe is not in clusters. . .

2. gas has not been detected at any

wavelength

If gas cold enough, would not expect it to be detectable, so point 2
is not really valid.
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Baryonic Dark Matter, II

(Alcock et al., 2001, Fig. 2)

MACHOS:

Pro:
1. detected by microlensing towards SMC and LMC

(see figure) =⇒ MW halo consists of 50% WD

Contra:
1. possible “self-lensing” (by stars in MW or SMC/LMC;

confirmed for a few cases)

2. where are white dwarfs?

3. WD formation rate too high (100 year−1 Mpc−3)
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Nonbaryonic Dark Matter

Nonbaryonic dark matter:

Requirements:

• gravitating

• non-interacting with baryons

=⇒ Grab-box of elementary particle physics:

1. Neutrinos with non-zero mass
Pro: It exists, mass limits are a few eV, need only

〈mν〉 ∼ 10 eV

Contra: ν are relativistic =⇒ Hot dark matter =⇒
Forces top down structure formation, contrary to what

is believed to have happened.

2. Axion
(=Goldstone boson from QCD, invented to prevent strong CP
violation in QCD; m ∼ 10−5...−2 eV)

Pro: It could exist, would be in Bose-Einstein

condensate due to inflation (=⇒ Cold dark matter!),

might be detectable in the next 10 years

Contra: We do not know it exists. . .

3. Neutralino or other WIMPs (weakly interacting

massive particles; masses m ∼ GeV)
Pro: Also is CDM

Contra: We do not know they exist. . .
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Friedmann with Λ 6= 0, I

=⇒ Need to study cosmology with Λ 6= 0.
Reviews: Carroll, Press & Turner (1992), Carroll (2000)

Friedmann equation with Λ 6= 0:

H2(t) =

(

Ṙ

R

)2

=
8πGρ

3
− k

R2
+

Λ

3
(6.136)

And define the Ω’s:

Ωm =
8πGρm

3H2
0

(7.47)

ΩΛ =
Λc4

3H2
0

(6.120)

Ωk = − k

R2
0H

2
0

(7.48)

Because of Eq. (6.136),

Ωm + ΩΛ + Ωk = Ω + Ωk = 1 (7.49)



7–29

UWarwick

Dark Matter 6

Friedmann with Λ 6= 0, II

It is easier to work with the dimensionless scale factor,

a =
R(t)

R0
(4.30)

=⇒ Friedmann:
(

ȧ

a

)2

=
8πG

3

ρm,0

a3
− k

a2R2
0

+
Λ

3
(7.50)

since ρm = ρm,0a
−3 (Eq. 4.67).

Inserting the Ω’s
(

ȧ/H0

a

)2

=
Ωm

a3
+

1− Ωm − ΩΛ

a2
+ ΩΛ (7.51)

Substituting the time in units of todays Hubble time,

τ = H0 · t (7.52)

results in
(

da

dτ

)2

= 1 + Ωm

(

1

a
− 1

)

+ ΩΛ(a2 − 1) (7.53)

with the boundary conditions

a(τ = 0) = 1 and
da

dτ

∣

∣

∣

∣

τ=0
= 1 (7.54)

For most combinations of Ωm and ΩΛ, need to solve

numerically.
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Friedmann with Λ 6= 0, III

-1 0 1 2 3
Ω=Ωm+ΩΛ

0

1

2

3

Ω
m
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n
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se
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Λ=0

Λ>0

Λ<0

re
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lla
ps

e 
in 

fin
ite

 tim
e

un
bo

un
d 

ex
pa

ns
ion

No Big Bang

Loitering

(after Carroll, Press & Turner, 1992, Fig. 1)

With Λ, evolution of universe is more complicated

than without:

• unbound expansion possible for Ω < 1,

• For ΩΛ large: no big bang!

• For ΩΛ large: possible “loitering phase”
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ΩΛ > 1, I

-3 -2 -1 0 1
τ=H0 t

0

1

2

3

4

a(
τ)

Loitering Phase

Today

“Loitering universe” with Ωm = 0.55, ΩΛ = 2.055

For large ΩΛ: contraction from +∞ and reexpansion

=⇒ no big bang.

For slightly smaller ΩΛ: phase where ȧ ∼ 0 in the past

=⇒ loitering universe.

Threshold for presence of turning-point (Carroll, Press &

Turner, 1992, Eq. 12):

ΩΛ ≥ ΩΛ,thresh = 4Ωm

{

Cκ

[

1

3
C−1

κ

(

1− Ωm

Ωm

)]}3

(7.55)

where κ = sgn(0.5− Ωm) and Cκ(θ) was defined in

Eq. (4.25).
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ΩΛ > 1, II

QSO at z = 5.82, courtesy SDSS

For ΩΛ = ΩΛ,thresh: turning-point, i.e., there is a minimal a.

Since

1 + z =
1

a
(4.43)

existence of turning-point =⇒ maximal possible z:

z ≤ 2Cκ

(

1

3
C−1

κ

{

1− Ωm

Ωm

})

− 1 (7.56)

(Carroll, Press & Turner, 1992, Eq. 14).

Since quasars observed with z = 5.82, this means that

Ωm < 0.007, clearly not what is observed =⇒ ΩΛ < 1.
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ΩΛ < 1

-1 0 1 2 3
τ=H0 t

0

2

4

6

a(
τ)

Ωm=0.3 and

... ΩΛ=0.7

... ΩΛ=0.5

... ΩΛ=0.1

... ΩΛ=0.0

Today

For ΩΛ < 1 evolution has two parts:

• matter domination, similar to earlier results

• Λ domination, exponential rise.

Exponential rise called by some workers the “second inflationary
phase”. . .

Note accelerating effect of ΩΛ!
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ΩΛ < 1

Computation of age similar to ΩΛ = 0 case (see,

e.g., Eq. 4.86), but generally only possible

numerically.

Result:

Universes with ΩΛ > 0 are older than those

with ΩΛ = 0.

This solves the age problem, that some globular clusters have age
comparable to age of universe if ΩΛ = 0.

Analytical formula for age (Carroll, Press & Turner, 1992,

Eq. 17):

t =
2

3H0

sinh−1
(

√

(1− Ωa)/Ωa

)

√
1− Ωa

(7.57)

for Ωa < 1, where

Ωa = 0.7Ωm + 0.3(1− ΩΛ) (7.58)

For Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1:

t = 13.5 Gyr.
Remember that for Ωm = 1, t = 3/2H0!
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Luminosity Distance

Influence of Λ most prominent at large distances!

=⇒ Expect influence on Hubble Diagram.

=⇒Need to find relation between measured flux,

emitted luminosity, and redshift.

Assume source with luminosity L at comoving

coordinate r, emitting isotropically into 4π sr.

At time of detection today, photons are

• on sphere with proper radius R0r,

• redshifted by factor 1 + z,

• spread in time by factor 1 + z.

=⇒ observed flux is

F =
L

4πR2
0r

2(1 + z)2
(7.59)

The luminosity distance is defined as

dL = R0 · r · (1 + z) (7.60)

The computation of dL is somewhat technical, one can show that
(Carroll, Press & Turner, 1992):

dL =
c

H0
|Ωk|−1/2 · S−sgn(Ωk)

{

|Ωk|1/2

∫ z

0

[

(1 + z)2(1 + Ωmz)− z(2 + z)ΩΛ

]1/2
dz
}

(7.61)
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Supernovae

Best way to determine ΩΛ:

Type Ia supernovae

Remember: SN Ia = CO WD collapse. . . (Hoyle, Fowler, Colgate,
Wheeler,. . .

The distance modulus is

m−M = 5 log

(

dL

1 Mpc

)

+ 25 (7.62)

Use SNe as standard candles =⇒ Deviations

from dL ∝ z indicative of Λ.

Two projects:

• High-z Supernova Team (STSCI, Riess et al.)

• Supernova Cosmology Project (LBNL,

Perlmutter et al.)

Both find SNe out to z ∼ 1.

Present mainly Perlmutter et al. results here,

Riess et al. (1998) are similar.
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Supernovae

Basic observations: easy:

• Detect SN in rise =⇒ CTIO 4 m

• Follow SN for ∼ 2–3 months with 2–4 m class

telescopes, HST, Keck. . .

More technical problems in data analysis:

Conversion into source frame:

• Correction of photometric flux for redshift:

“K-correction”

• Correct for time dilatation in SN light curve

Further things to check

• SN internal extinction

• Galactic extinction

• Galactic reddening

• Photometric cross calibration

• Peculiar motion of SN
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Supernovae

Calan/Tololo

(Hamuy et al, 

A.J. 1996)

Supernova

Cosmology

Project

ef
fe

ct
iv

e 
 m

B

(0.5,0.5)    (0, 0)
( 1,    0 )    (1, 0)
(1.5,–0.5)  (2, 0)

(ΩΜ,ΩΛ) = 

( 0,   1 )

F
la

t

Λ
 =

 0

redshift  z

14

16

18

20

22

24

26

0.02   0.05    0.1 0.2   0.5     1.00.02   0.05    0.1 0.2   0.5     1.0

 
 

(Perlmutter et al., 1999, Fig. 1)

42 SNe from SCP, 18 low redshift from

Calán/Tololo SN Survey

Vertical error bars: measurement uncertainty plus

0.17 mag intrinsic mag. dispersion

Horizontal error bars: 300 km s−1 peculiar velocity

uncertainty
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Calan/Tololo

(Hamuy et al, 

A.J. 1996)
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(Perlmutter et al., 1999, Fig. 2)

Best fit: Ωm, flat = 0.28+0.09
−0.08, χ2/DOF = 56/50

corresponding best free fit: (Ωm, ΩΛ) = (0.73, 1.32).
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Supernovae

Sullivan et al., 2002

Updated 2002 Hubble diagram for SN Iae

confirms Perlmutter 1999.
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(68% and 90% confidence regions for sources of systematic error,
Perlmutter et al., 1999, Fig. 5)
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Isochrones for age of universe for H0 = 63 km s−1 Mpc−1

(for h = 0.7: age 10% smaller).

=⇒ Consistent with globular cluster ages!
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Summary

For all practical purposes, the currently best

values are

Ωm ∼ 0.3 ΩΛ = 0.7

Even if Ω 6= 1:

ΩΛ 6= 0

And therefore

Baryons are an energetically unimportant

constituent of the universe.

“The dark side of the force. . . ” :-)

Small print: Influences of

• Metallicity evolution

• Dust

• Malmquist bias

• ???

. . . these are believed to be small, however, see Drell,

Loredo & Wasserman (2000) for a critique



7–45

UWarwick

Summary 2

Outlook

What is physical reason for ΩΛ 6= 0?

Currently discussed: quintessence: “rolling scalar

field”, corresponding to very lightweight particle

(λde Broglie ∼ 1 Mpc), looks like time varying

cosmological “constant”.

Why? =⇒ More naturally explains why ΩΛ so

close to 0 (i.e., why matter and vacuum have so

similar energy densities)

Motivated by string theory and M theory. . .

Still VERY SPECULATIVE, decision Λ vs.

quintessence should be possible in next 5. . . 10

years when new instruments become available.
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Outlook
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Even better constraints come from

combination of SNe data with structure

formation.
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