

Elliptical Galaxies

Elliptical Galaxies



Elliptical Galaxies

Elliptical Galaxies

S



Elliptical Galaxies

Elliptical Galaxies

ດ

| $D_n-\sigma$<br>iervational version of the fundamental plane relationship: Instead of inserting<br>nd $I_0$ , measure diameter $D_n$ of aperture to reach some mean surface brights<br>is (typically sky brightness, 20.75 mag arcsec <sup>-2</sup> in B), and use calibration. | 5                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| cssumptions are<br>L same everywhere.<br>iicals have same stellar population everywhere<br>tion paper: Kelson et al. (2000).                                                                                                                                                    | Cosmology – Basic Facts                                                                                                                    |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                            |
| al Galaxies 12                                                                                                                                                                                                                                                                  |                                                                                                                                            |
| 9 <u>-13</u>                                                                                                                                                                                                                                                                    | 6-2<br>Basic Facts                                                                                                                         |
| gworth G.D., Tonry J.L., et al., 2000. ApJ 529. 768<br>Ahurazov E., Sazonov S., et al., 2007, A&A 473, 783                                                                                                                                                                      | Cosmology deals with answering the questions about the universe as a whole.<br>The main question is:                                       |
|                                                                                                                                                                                                                                                                                 | How did the universe evolve into what it is now?                                                                                           |
|                                                                                                                                                                                                                                                                                 | For this, four major facts need to be taken into account:                                                                                  |
|                                                                                                                                                                                                                                                                                 | The universe is: • expanding,<br>• isotropic,<br>• and homogeneous.                                                                        |
|                                                                                                                                                                                                                                                                                 | The isotropy and homogeneity of the universe is called the <i>cosmological principle</i> .<br>Perhaps (for us) the most important fact is: |
|                                                                                                                                                                                                                                                                                 | <ul> <li>The universe is habitable to humans.</li> </ul>                                                                                   |
|                                                                                                                                                                                                                                                                                 | i.e., the anthropic principle.                                                                                                             |
|                                                                                                                                                                                                                                                                                 | The one question cosmology does not attempt to answer is: How came the universe into being? $\Longrightarrow$ Realm of theology!           |
|                                                                                                                                                                                                                                                                                 | Basic Facts 1                                                                                                                              |



**Basic Facts** 



(Image: http://sckim.kasi.re.kr/Images/hooker2\_5m.gif) "Hubble's" 2.5 m (100-inch) telescope on Mt. Wilson



As a consequence of the cosmological redshift, for different z different parts of the spectrum of a distant source are visible.





**Basic Facts** 

**Basic Facts** 

ი



The universe is homogeneous  $\Longleftrightarrow$  The universe looks the same everywhere in space

Testable by observing spatial distribution of galaxies.

Basic Facts

10





(Jarrett, 2004, Fig. 1) Distribution of Galaxy redshifts in the 2MASS galaxy catalogue (color code: blue - z < 0.01; green - 0.01 < z < 0.04; red - 0.04 < z < 0.1)



**Basic Facts** 

Structures seen are galaxy clusters (gravitationally bound) and superclusters (larger structures, not [yet]

gravitationally bound).

| 7-1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | C _ L |                                                               | s homogeneous and                                      |                                                                                                                                       | orinciple.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       | parately:<br>sin field equations.                                                                                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | World Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |       | Structure                                                     | vations: cosmological principle holds: The universe it | aic.                                                                                                                                  | sed theoretical framework obeying the cosmological present the cosmological present the second second present the second s | <ul> <li>ombination of</li> <li>General Relativity</li> <li>Thermodynamics</li> <li>Quantum Mechanics</li> <li>omplicated!</li> </ul> | % of the work, the above points can be dealt with sel<br>Define metric obeying cosmological principle.<br>Obtain equation for evolution of universe using Einste<br>Use thermo/QM to obtain equation of state.<br>Solve equations. |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |                                                               | Obser                                                  | isotrop                                                                                                                               | ž<br>↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nse co                                                                                                                                | For 99                                                                                                                                                                                                                             |
| 6–15<br>sotropy | Best evidence for isotropy: Intensity of 3K Cosmic Microwave Background (CMB) radiation.<br>First: dipole anisotropy due to motion of Sun (CMB) radiation.<br>First: dipole anisotropy due to motion of Sun (see slide 6–3), after subtraction: $\Delta T/T \lesssim 10^{-4}$ on scales from 10" to 180°.<br>At level of $10^{-6}$ : structure in CMB due to structure of surface of last scattering of the CMB photons, i.e., structure at the time when Hydrogen recombined. | 14          |       | 6-15                                                          |                                                        | selon Univ. Press)                                                                                                                    | 53, (New York: W. H. Freeman)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |                                                                                                                                                                                                                                    |
|                 | T = 2,728 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basic Facts |       | Bannas C. I. Bandav A. J. Gorski K. M. et al 1906. And 464.11 | Hubble, E. P. 1929, 15, 168                            | Jarrett, T., 2004, Proc. Astron. Soc. Aust., 21, 396<br>Peebles, P. J. E., 1993, Principles of Physical Cosmology, (Princeton: Prince | Silk, J., 1997, A Short History of the Universe, Scientific American Library 5:<br>Trimble, V. 1997, Snace Sci. Rev. 79, 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                    |

Introduction

| $\frac{1}{20 \text{ Metrics}} = \frac{1}{20 \text{ Metrics}}$ | 7-3                                                                                                                                   |                                                                                                                               | 7–5          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| can start to think about universe: Brief introduction to assumptions of lativity whome for the pay setule, or check with the flat introduction to assumptions of lativity. The metric the pay setule, or check with the flat introduction to assumptions of the pay setule, or check with the flat introduction to assumptions of the pay setule, or check with the flat interview in the metric tensor, $g_{\mu\nu}$ , is defined through the curved interviewer flat interviewer flat introduction principle. There is no experiment by which one can distribute space (Erristein field equation). Thus, for the $\mathbb{R}^2$ , $g_{\mu\nu}$ , $g_{\mu\nu}$ , $g_{\mu\nu}$ , $g_{\mu\nu}$ during the curved interviewer flat interviewer with the set interviewer interviewer flat interviewer intervi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRT vs. Newton                                                                                                                        | 2D Metrics                                                                                                                    |              |
| protectores for the gray of each or near with the Neutral or finance, dis, in Euclidean space, $\frac{R^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} = \frac{dr^2}{R^2} + \frac{dr^2}{R^2} = $                                                                                                                                                                                                 | can start to think about universe: Brief introduction to assumptions of lativity.                                                     | The metric describes the local geometry of a space.                                                                           |              |
| The metric tensor, $g_{\mu\nu}$ is defined through $d_{\mu\nu}^{2} = d_{\mu\nu}^{2} + d_{\mu\nu}^{2}$<br>(Enternion induction inducti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ory lectures for the gory details, or check with the literature (Weinberg or MTW).                                                    | Differential distance, $d_{s}$ , in Euclidean space, $\mathbb{R}^{2}$ :                                                       |              |
| The metric tensor, $g_{\mu\nu}$ is defined through the equation.<br>The metric tensor, $g_{\mu\nu}$ is defined through the equation.<br>The metric tensor, $g_{\mu\nu}$ is defined through the equation.<br>It ways<br>equivalence principle: There is no experiment by which one can define the equation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ons of GRT:                                                                                                                           | $\mathrm{d}s^2 = \mathrm{d}x_1^2 + \mathrm{d}x_2^2$                                                                           | (7.1)        |
| the ender ender the formulated in a coordinate system indentity which one can distinutive the formulated in a coordinate system and inertial systems. It ways the formulated in a coordinate systems and inertial systems. Thus, for the $\mathbb{R}^2$ , $\mathbb{R}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}$ , $d_{i}^{n} = \frac{1}{n}$ , $q_{i}^{n} $                                                                                                                                                                                                                                                                                                                         | is 4-aimensionai, mignt pe curvea<br>(=Energy) modifies space (Einstein field equation).                                              | The metric tensor, $g_{\mu u}$ , is defined through                                                                           |              |
| equivalence principle: There is no experiment by which one can distintive the equivalence principle is used inertial systems.<br>point, space is locally Minkowski (i.e., locally, SRT holds).<br>point, space is locally Minkowski (i.e., locally, SRT holds).<br>provint, space is locally for province in the maximum state is locally in 4.D geometry of the universe. first look at 2D spaces (eas-<br>mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ance: physical laws must be formulated in a coordinate-system inde-<br>it way.                                                        | $\mathrm{d}s^2 = \sum_{\mu} \sum_{\nu} g_{\mu\nu}  \mathrm{d}x^{\mu} =: g_{\mu\nu}  \mathrm{d}x^{\nu}$                        | (7.2)        |
| Thus, for the $\mathbb{R}^4$ , $g_{11} = 1$ , $g_{22} = 0$ , $g_{22} = 0$<br>standing of geometry of space necessary to understand physics.<br>In this, for the $\mathbb{R}^4$ , $g_{11} = 1$ , $g_{22} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ , $g_{21} = 0$ , $g_{22} = 0$ , $g_{23} = 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | equivalence principle: There is no experiment by which one can distin-<br>etween free falling coordinate systems and inertial systems | (Einstein's summation convention)                                                                                             |              |
| standing of geometry of space necessary to understand physics.<br>(c) 1 FRW Metric<br>2D Metrics<br>2D Metrics<br>(c) 92 = 0 92 = 0.012<br>2D Metrics<br>2D Metrics<br>(c) 1 1 (c) 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n point, space is locally Minkowski (i.e., locally, SRT holds).                                                                       | Thus, for the $\mathbb{R}^2$ , $a_{ii} = 1$ , $a_{ii} = 0$                                                                    |              |
| ic TERW Metric<br>2D Met                                                                                                                                                                                                                                                                                                                                                       | standing of geometry of space necessary to understand physics.                                                                        | $g_{21} = 0$ $g_{22} = 1$                                                                                                     | (7.3)        |
| ic TRW Metric<br>2D Metric<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                               |              |
| 2D Metrics<br>2D Metrics<br>2D Metrics<br>alize).<br>2D Metrics<br>2D Metrics<br>(a), defined by<br>(b) defined by<br>(c) (a)<br>(c) (c) (c)<br>(c) (c) (c) (c)<br>(c) (c) (c) (c)<br>(c) (c) (c) (c)<br>(c) (c) (c) (c) (c)<br>(c) (c) (c) (c) (c) (c)<br>(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ic 1                                                                                                                                  | FRW Metric                                                                                                                    | ന            |
| ZD Metrics       ZD Metrics         scribing the 4D geometry of the universe: first look at 2D spaces (eas-<br>alize).       Eut: Other coordinate-systems are also possible<br>Changing to polar coordinates $r'$ , $\theta$ , defined by<br>$\chi^2_{24}$ 997, p. 107) $\chi^2_{24}$ 108       positively curved         lane ( $\mathbb{R}^2$ )       positively curved         Lane ( $\mathbb{R}^2$ )       negatively curved $\chi^2_{24}$ $\chi^2_{24}$ policiplane ( $\mathcal{H}^2$ )       negatively curved $\chi^2_{24}$ $\chi^2_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-4                                                                                                                                   |                                                                                                                               | 7–6          |
| But: Other coordinate-systems are also possible<br>alize).<br>But: Other coordinate-systems are also possible<br>Changing to polar coordinates $r'$ , $\theta$ , defined by<br>$x_{2}$<br>and $\theta$<br>by $r_{2}$ , $r_{107}$<br>by $r_{2}$ , $r_{107}$<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>the $(\mathscr{P}^{2})$ positively curved<br>and $(\mathscr{P}^{2})$ negatively curved<br>bolic plane $(\mathscr{P}^{2})$ negatively curved<br>$\mathcal{P}$ bolic plane $(\mathscr{P}^{2})$ negatively curved                                                                                     | 2D Metrics                                                                                                                            | 2D Metrics                                                                                                                    |              |
| $x_{2}^{2}$<br>$y_{7}$ , p. 107)<br>$y_{7}$ , p. 107)<br>$y_{7}$ , p. 107)<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>$x_{2}^{2}$<br>$y_{1}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{1}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}^{2}$<br>$y_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | scribing the 4D geometry of the universe: first look at 2D spaces (eas-<br>alize).                                                    | But: Other coordinate-systems are also possible in the plane! Changing to polar coordinates $r'$ , $\theta$ , defined by      |              |
| $ \begin{array}{c} \text{it is } \\ \text{if is } \\ \text{Performance } \\ Performa$                                                                                                                           |                                                                                                                                       | $\mathbf{x_1} = x' \cos \theta$                                                                                               | (7.4)        |
| $Price Classes of isotropic and homogeneous two-dimensional spaces:three classes of isotropic and homogeneous two-dimensional spaces:ere (\mathscr{S}^2) positively curvedane (\mathbb{R}^2) zero curvaturebolic plane (\mathscr{M}^2) negatively curved\Sigma angles in triangle >, =, or < 180°)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | $x_2 =: r' \sin \theta$ it is easy to see that                                                                                |              |
| Performance of isotropic and homogeneous two-dimensional spaces:<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>ere ( $\mathscr{S}^2$ ) positively curved<br>lane ( $\mathbb{R}^2$ ) zero curvature<br>bolic plane ( $\mathscr{H}^2$ ) negatively curved<br>$\sum$ angles in triangle >, =, or < 180°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       | $ds^2 = dr'^2 + r'^2 d\theta^2$                                                                                               | (7.5)        |
| three classes of isotropic and homogeneous two-dimensional spaces:<br>three classes of isotropic and homogeneous two-dimensional spaces:<br>ere $(\mathscr{S}^2)$ positively curved<br>lane $(\mathbb{R}^2)$ zero curvature<br>bolic plane $(\mathscr{H}^2)$ negatively curved<br>$\sum_{n=1}^{\infty} angles in triangle >, =, or < 180°)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       | r'de ds Performing a change of scal                                                                                           | by           |
| ere $(\mathscr{X}^2)$ positively curved<br>ane $(\mathbb{R}^2)$ zero curvature<br>bolic plane $(\mathscr{H}^2)$ negatively curved<br>$\sum$ angles in triangle >, =, or < 180°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | et, p. 107)<br>three classes of isotropic and homogeneous two-dimensional spaces:                                                     | define $\mathbf{r}'$ is substituting $r' = Rr$ , then graded $\mathbf{r}'$ is $de^2 = R^2 I_0 h^2 + h^2 d\theta^2 \mathbf{l}$ | /es<br>(7 6) |
| ane ( $\mathbb{K}^{2}$ ) zero curvature<br>oolic plane ( $\mathscr{H}^{2}$ ) negatively curved<br>$\sum$ angles in triangle >, =, or < 180°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ere $(\mathscr{S}^2)$ positively curved                                                                                               | $\int dn t = t = t = t = t = t = t = t = t = t $                                                                              |              |
| $\sum$ angles in triangle >, =, or < 180°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ane (账 <sup>2</sup> ) zero curvature<br>bolic plane ( <i>光</i> <sup>2</sup> ) negatively curved                                       |                                                                                                                               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sum$ angles in triangle >, =, or < 180°)                                                                                            |                                                                                                                               |              |
| V calculate what the metric for these spaces looks like.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v calculate what the metric for these spaces looks like.                                                                              |                                                                                                                               |              |

**FRW Metric** 

2



**FRW Metric** 

ശ

ω

| 2D Metrics                                                                                                  | 7-11   | 7-12<br>Transcript of Manda secsion to Abriaia E.                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ine, $\mathscr{H}^2$ , is defined by ${}_{m^2\pmm^2-m^2--m^2}$                                              | (7 15) | <pre>instructure transfer accessin to Guant L<br/>&gt; x1:=r*sinh(theta)*<br/>&gt; x2:=r*sinh(theta)*<br/>z2</pre>                                                                                                                                                                |
| owski space, where                                                                                          |        | <pre>&gt; x3:=r*cosh(theta), &gt; dx1:=diff(x1,theta &gt; dx1:=rcosh(9) or</pre>                                                                                                                                                                                                  |
| $ds^{2} = dx_{1}^{2} + dx_{2}^{2} - dx_{3}^{2}$                                                             | (7.16) | <pre>&gt; dx2:=diff(x2,thet:</pre>                                                                                                                                                                                                                                                |
| $= \mathrm{d}x_1^2 + \mathrm{d}x_2^2 - \frac{(x_1\mathrm{d}x_1 + x_2\mathrm{d}x_2)^2}{R^2 + x_1^2 + x_2^2}$ | (7.17) | $ds^{2} := (r \cosh(\theta) \cos(\phi) dthet) + (r \cosh(\theta) \sin(\phi) dthet) r \sinh(\theta) \cos(\phi) (r \cosh(\theta) + r \sinh(\theta) \sin(\phi) (r \cosh(\theta) r^{2} + r^{2} \sinh(\theta)^{2} \cos(\phi)^{2}.$                                                     |
| $ ightarrow iR$ (where $i~=~\sqrt{-1}$ ) to obtain same form as for                                         | sphere | > expand (ds2);<br>$r^2 \cosh(\theta)^2 \cos(\phi)^2 diheta^2 + r^2$<br>$+ r^2 \sinh(\theta)^2 \cos(\phi)^2 dph'$                                                                                                                                                                 |
| $\mathrm{d}s^2 = R^2 \left\{ \frac{\mathrm{d}r^2}{1 + r^2} + r^2  \mathrm{d}\theta^2 \right\}$              | (7.18) | $ \begin{array}{l} -2 \frac{r^4 \sinh(\theta)^2 \cos(\theta)^2 \cos(\beta)^2 \cos(\beta)}{73} \\ \%1 := r^2 + r^2 \sinh(\theta)^2 \cos(\beta) \\ & \qquad \qquad$ |
|                                                                                                             | o      |                                                                                                                                                                                                                                                                                   |
| 2D Motrice                                                                                                  | 7-12   | Ø                                                                                                                                                                                                                                                                                 |
| ופטווסטין עבע ואפערטאן איז אין איז אין איז                              | by     | To summarize:                                                                                                                                                                                                                                                                     |
| $x_1 = R \sinh\theta \cos\phi$ $x_2 = R \sinh\theta \sin\phi$ $x_3 = R \cosh\theta$                         | (7.19) | Sphere                                                                                                                                                                                                                                                                            |
| $\mathbf{r} \in [0, 2\pi]$ ).                                                                               |        | Hyperbolic Plane → All three metrics                                                                                                                                                                                                                                              |
| ple (see handout) will convince you that these coordi                                                       | lates  |                                                                                                                                                                                                                                                                                   |
| $\mathrm{d}s^2 = R^2 \left\{ \mathrm{d}\theta^2 + \sinh^2 \theta  \mathrm{d}\phi^2 \right\}$                | (7.20) | where $k$ defines the g                                                                                                                                                                                                                                                           |
| nd has an infinite volume.                                                                                  |        |                                                                                                                                                                                                                                                                                   |
|                                                                                                             |        |                                                                                                                                                                                                                                                                                   |





10

**FRW Metric** 

÷

| 7–16<br>RW Metric | Metrics of the form of eq. (7.26) are called Robertson-Walker (RW) metrics (in-<br>troduced in 1935).<br>Previously studied by Friedmann and Lemaître…<br>One common choice is                                                      | $ds^{2} = c^{2} dt^{2} - R^{2}(t) \left[ dr^{2} + S_{k}^{2}(r) d\psi^{2} \right] $ (7.27)<br>where<br>where<br>$R(t): \text{ scale factor, containing the physics}$ $t: \text{ cosmic time}$ $t: \text{ cosmic time}$ $r, \theta, \phi: \text{ comoving coordinates (remember Eq. (7.25) (d\psi^{2} := d\theta^{2} + \sin^{2}\theta d\phi^{2})!)$ $k: \text{ defines curvature, integer}$ | $S_k(r)$ was defined in Eq. (7.24).<br>Remark: $\theta$ and $\phi$ describe directions on sky, as seen from the arbitrary center of the coordinate system (=us), $r$ can be interpreted as a radial coordinate. | FRW Metric 14 | 7–17<br>RW Metric | The RW metric defines an universal coordinate system tied to expansion of space:<br>$B(x_2,y_2)$                                                    | A(M,y1)<br>A(X,y1)                                                                                                                                                                                        | Scale factor $R(t)$ describes evolution of universe.• $r$ is called the comoving distance.• $D(t) \coloneqq r \cdot R(t)$ is called the proper distance,                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-14              | (7.14)<br>(7.6)<br>(7.20)                                                                                                                                                                                                           | (7.23)<br>for $k = +1$<br>for $k = 0$ (7.24)<br>for $k = -1$                                                                                                                                                                                                                                                                                                                              | This is confusing, but le-                                                                                                                                                                                      | 12            | 7-15              | ordinate system.<br>synchronized, e.g., by                                                                                                          | (7.25)                                                                                                                                                                                                    | coordinates.<br>(7.26)                                                                                                                                                         |
| 2D Metrics        | e found:<br>$ds^{2} = R^{2} \left\{ d\theta^{2} + \sin^{2}\theta d\phi^{2} \right\}$ $ds^{2} = R^{2} \left\{ d\theta^{2} + \theta^{2} d\phi^{2} \right\}$ $ds^{2} = R^{2} \left\{ d\theta^{2} + \sinh^{2}\theta d\phi^{2} \right\}$ | written as<br>$ds^{2} = R^{2} \left\{ d\theta^{2} + S_{k}^{2}(\theta) d\phi^{2} \right\}$ $+1$ $0 \text{ and } C_{k}(\theta) = \sqrt{1 - kS_{k}^{2}(\theta)} = \begin{cases} \cos \theta \\ 1 \end{cases}$ $\cosh \theta$                                                                                                                                                                 | will be needed later<br>er formulae, some coordinates have been renamed.                                                                                                                                        |               | RW Metric         | expansion ⇒ ∃ freely expanding cosmical co<br>ental observers<br>n in which the 3K radiation is isotropic, clocks can be<br>ensity of the universe. | In the equivalence principle.<br>In the equivalence principle.<br>$y \Longrightarrow $ spatial part is spherically symmetric:<br>$\mathrm{d}\psi^2 := \mathrm{d}\theta^2 + \sin^2 	heta \mathrm{d}\phi^2$ | , $R(t)$ $\Longrightarrow$ measure distances using comoving $t^2 = c^2 \operatorname{d}t^2 - R^2(t) \left[ f^2(r) \operatorname{d}r^2 + g^2(r) \operatorname{d}\psi^2 \right]$ |
|                   | ordinates" we<br>bhere:<br>Plane:<br>Plane:                                                                                                                                                                                         | trics can be v<br>$\theta$ for $k = -$<br>for $k = -$<br>h $\theta$ for $k = -$                                                                                                                                                                                                                                                                                                           | ogue of $S_k, C_k$ , red to the earlier                                                                                                                                                                         |               |                   | al principle + t<br>rs =: fundame<br>cosmic time<br>ordinate system<br>a to the local der                                                           | ty and isotropy                                                                                                                                                                                           | : $\exists$ scale factor, ks like $\mathrm{d}_{s}^{2}$                                                                                                                         |

15

**FRW Metric** 

13

**FRW Metric** 





4

Dynamics

က

|                                                                                                                                                                                             | 7–26   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7–28            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| The Critical Density                                                                                                                                                                        | $\int$ | Redshift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| $\Omega$ has a second order effect on the expansion:                                                                                                                                        |        | The cosmological redshift is a consequence of the expansion of the univer-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se:             |
| Taylor series of $R(t)$ around $t=t_0$ :                                                                                                                                                    |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| $\frac{R(t)}{D(t)} = \frac{R(t_0)}{D(t)} + \frac{\dot{R}(t_0)}{D(t)} \left(t - t_0\right) + \frac{1}{2} \frac{\ddot{R}(t_0)}{D(t)} \left(t - t_0\right)^2$                                  | (7.43) | The comoving distance is constant, thus in terms of the proper distance: $D(t={ m todav})$ $D(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| $R(T_0) = R(T_0) = R(T_0) = R(T_0)$ Z $R(T_0)$ Z $R(T_0)$                                                                                                                                   |        | $d = \frac{1}{R(t = today)} = \frac{1}{R(t)} = const.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (7.50)          |
| The mean equation Eq. (7.37) can be written $\ddot{B}$ $4\pi G$ $4\pi G$ $3H^2$ $0H^2$                                                                                                      |        | Set $a(t)=R(t)/R(t=	ext{today}),$ then eq. (7.50) implies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| $\frac{1}{R} = -\frac{1}{3} \rho = -\frac{1}{3} \Omega \frac{1}{8\pi G} = -\frac{1}{2} \Omega$                                                                                              | (7.44) | $\lambda_{obs} = \frac{\lambda_{emit}}{\lambda_{obs}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (7.51)          |
| Since $H(t)=\dot{R}/R$ (Eq. 7.49), Eq. (7.43) is                                                                                                                                            |        | () · · · hearvalannith ) · · amittad wavalannith)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| $\frac{R(t)}{2(t-t)} = 1 + H_0 (t-t_0) - \frac{1}{2} \frac{\Omega_0}{2} H_0^2 (t-t_0)^2$                                                                                                    | (7.45) | (vous: observed waverengur, venil: ennined waverengur)<br>Thus the observed redshift is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| $R(t_0)$ 2 2 $\sim$                                                                                                                                                                         |        | $\sim - \lambda_{obs} - \lambda_{emit} - \lambda_{obs}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 501          |
| where $H_0 = H(t_0)$ and $\Omega_0 = \Omega(t_0)$ .                                                                                                                                         |        | $z = \frac{1}{\lambda_{\text{emit}}} = \frac{1}{\lambda_{\text{emit}}} - \frac{1}{\lambda_{\text{obs}}} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (70.1)          |
| The subscript 0 is often omitted in the case of $\Omega.$                                                                                                                                   |        | $\mathbf{D}(t = todow)  \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Often, Eq. (7.45) is written using the deceleration parameter:                                                                                                                              |        | $\implies \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7.53)          |
| $q := \frac{\Omega}{2} = -\frac{\ddot{R}(t_0)R(t_0)}{\dot{R}^2(t_0)}$                                                                                                                       | (7.46) | Light emitted at $z = 1$ was emitted when the universe was half as big as today!<br>z: measure for <i>relative size</i> of universe at time the observed light was emitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| Dynamics                                                                                                                                                                                    | Q      | Dynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∞               |
|                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                             | 7–27   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-28            |
|                                                                                                                                                                                             |        | Note that the definition of $H$ allows us to derive Hubble's relation for the case of small $v,i.e.,v\ll c.$ In this case, the red-shift is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| Hubble's Law follows from the variation of $R(t)$ :                                                                                                                                         |        | $z = \frac{v}{c} \implies z = \frac{Hd}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (7.54)          |
|                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                             |        | An alternative derivation of the cosmological redshift follows directly from general relativity, using the basic GR fact that for photons $ds^2 = 0$ . Inserting this in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nto the metric, |
|                                                                                                                                                                                             |        | and assuming without boss of generality that $d\psi^2 = 0$ , one finds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ               |
|                                                                                                                                                                                             |        | $0 = c^{\alpha} \operatorname{dt}^{\alpha} - R^{\alpha}(t) \operatorname{dt}^{\alpha} = 0 = \pm \frac{1}{R(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cc.7)          |
| Small scales $\Longrightarrow$ Euclidean geometry. Then the proper distance between two observers is:                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| $D(t) = d \cdot R(t)$                                                                                                                                                                       | (7.47) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| where $d$ : comoving distance.                                                                                                                                                              |        | $t_{\rm anni} + \Delta t_{\rm a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Expansion $\Longrightarrow$ proper separation changes:                                                                                                                                      |        | temit tobs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| $\frac{\Delta D}{\Delta t} = \frac{R(t + \Delta t)d - R(t)d}{\Delta t} \implies \lim_{\Delta t \to 0} \implies v = \frac{\mathrm{d}D}{\mathrm{d}t} = \dot{R} d = \frac{\dot{R}}{R} D =: HD$ | (7.48) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| ⇒ Identify local Hubble "constant" as                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| $H=rac{R}{R}=\dot{a}(t)~~(a(t)~	ext{from Eq. 7.29}, a(	ext{today})=1)$                                                                                                                     | (7.49) | The co <i>moving</i> distance traveled by photons emitted at cosmic times $t_{ m emit}$ and $t_{ m emit}$ is $\Delta t_{ m e}$ is $\int_{0}^{t_{ m emit}} t_{ m emit} + \Delta t_{ m e}$ is $\int_{0}^{t_{ m emit}} t_{ m emit} = \int_{0}^{t_{ m emit}} t_{ m emit} + \Delta t_{ m e}$ is a subscript of the second se | 100             |
| Since $R = R(t) \Longrightarrow H$ is time-dependent!                                                                                                                                       |        | $r_1 = \int_{t_{\min}} \frac{R(t)}{R(t)}$ and $r_2 = \int_{t_{\min}+\Delta t_0} \frac{R(t)}{R(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ac: J)         |
|                                                                                                                                                                                             | )      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |

(7.50)

(7.51)

(7.52)

(7.53)

ω

7–28

(7.54)

(7.55)

Dynamics

~

(7.56)

|                                                                                                                                                                                                 | 2-30                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–28<br>But the comoving distances are equal, $r_1 = r_2$ ! Therefore                                                                                                                           | Time Dilatation                                                                                                                                      |
| $0 = \int_{-\infty}^{t_{\rm obs}} \frac{\mathrm{c}\mathrm{d}t}{R(t)} - \int_{-\infty}^{t_{\rm obs}} \frac{\mathrm{c}\mathrm{d}t}{R(t)} \tag{7.57}$                                              | For light, $D=c\;\Delta t.$ Then a consequence of Eq. (7.50) is                                                                                      |
| $=\int_{t_{max}}^{t_{max}} \frac{1}{R(t)} - \int_{t_{max}}^{t_{max}} \frac{1}{R(t)} - \int_{t_{max}}^{t_{max}} \frac{1}{R(t)} $ (7.56)                                                          | $\frac{c \ \Delta t_{\text{emit}}}{\Delta t} = \frac{c \ \Delta t_{\text{obs}}}{\Delta t} \implies \frac{dt}{\Delta t} = \text{const.} $ (7.59)      |
| If $\Delta t$ small $\Longrightarrow R(t) pprox { m const:}$                                                                                                                                    | $K(t_{emit})$ $K(t_{obs})$ $K$                                                                                                                       |
| $= \frac{c \Delta t_0}{R(t_{\rm cont})} - \frac{c \Delta t_0}{R(t_{\rm cont})} \tag{7.59}$                                                                                                      | In other words: $\mathrm{d}t_{\mathrm{ohs}} = R(t_{\mathrm{ohs}})$                                                                                   |
| For a wave: $c\Delta t = \lambda$ , such that<br>$\frac{\lambda_{\min}}{B(t-1)} = \frac{\lambda_{\min}}{B(t-1)} \iff \frac{\lambda_{\min}}{\lambda_{\min}} = \frac{R(t_{\min})}{D(t-1)}$ (7.60) | $\frac{1}{\mathrm{d}t_{emit}} = \frac{1}{R(t_{emit})} = 1 + z \tag{7.62}$                                                                            |
| From this equation it is straightforward to derive Eq. (7.52).                                                                                                                                  | Time dilatation of events at large «                                                                                                                 |
|                                                                                                                                                                                                 |                                                                                                                                                      |
|                                                                                                                                                                                                 | This cosmological time dilatation has been observed in the light curves of supernova outbursts.                                                      |
|                                                                                                                                                                                                 | All other observables apart from $z$ (e.g., number density $N(z)$ , luminosity dis-                                                                  |
|                                                                                                                                                                                                 | ratice $u_{\Gamma}$ , etc.) require explicit Niowiedge of $u_{\Gamma}(r)$                                                                            |
|                                                                                                                                                                                                 | $\implies$ Need to look at the dynamics of the universe.                                                                                             |
|                                                                                                                                                                                                 |                                                                                                                                                      |
|                                                                                                                                                                                                 | Dynamics 10                                                                                                                                          |
| 66-7                                                                                                                                                                                            | 2-31                                                                                                                                                 |
| Redshift                                                                                                                                                                                        | Equation of state                                                                                                                                    |
| Outside of the local universe: Eq. (7.53) only valid interpretation of $z$ .                                                                                                                    | Evolution of the universe determined by three different kinds of equation of state:                                                                  |
| $\implies$ It is common to interpret $z$ as in special relativity:                                                                                                                              | 1. Matter: Normal (nonrelativistic) particles get diluted by expansion of the uni-                                                                   |
| She                                                                                                                                                                                             | Verse:                                                                                                                                               |
| $1 + z = \sqrt{\frac{24}{2} v/c} \tag{7.61}$                                                                                                                                                    | $ ho_{ m m} \propto R^{-3}$ (7.63)                                                                                                                   |
| $\frac{1}{1}$                                                                                                                                                                                   | Matter is also often called dust by cosmologists.                                                                                                    |
| Redshift is due to expansion of space, not due to motion of galaxy.                                                                                                                             | 2. Radiation: The energy density of radiation decreases because of volume ex-                                                                        |
| What <i>is</i> true is that $z$ is accumulation of many infinitesimal red-shifts à la Eq. (7.54), see, e.g., Peacock                                                                            | $ u_{\text{emit}}/ u_{\text{obs}} = R(t_{\text{obs}})/R(t_{\text{emit}}) $ such that                                                                 |
| .(202).                                                                                                                                                                                         | $\rho_{\rm r} \propto R^{-4} \tag{7.64}$                                                                                                             |
|                                                                                                                                                                                                 | 3. Vacuum: The vacuum energy density (= $\Lambda$ ) is independent of R:                                                                             |
|                                                                                                                                                                                                 | $\rho_{\rm V}={\rm const.} \tag{7.65}$                                                                                                               |
|                                                                                                                                                                                                 | Inserting these equations of state into the Friedmann equation and solving with the boundary condition $R(t=0)=0$ then gives a specific world model. |

7–30

Dynamics

ი

 $\dot{R}_{0}^{2}-\frac{8\pi G}{3}\rho R_{0}^{2}=-kc^{2}$ Equation of state Current scale factor is determined by  $H_0$  and  $\Omega_0$ : Friedmann for  $t = t_0$ :

Insert  $\Omega$  and note  $H_0=\dot{R}_0/R_0$ 

$$\iff H_0^2 R_0^2 - H_0^2 \Omega_0 R_0^2 = -kc^2$$

(7.67)

And therefore

$$R_0 = \frac{c}{H_0} \sqrt{\frac{k}{\Omega - 1}}$$
For  $\Omega \to 0, R_0 \longrightarrow c/H_0$ , the Hubble length.  
For  $\Omega = 1, R_0$  is arbitrary.
(7.68)

We now have everything we need to solve the Friedmann equation and determine the evolution of the universe for k = 0, +1, and -1.

Dynamics

72

7-33

k = 0, Matter dominated

For the matter dominated, flat case (the Einstein-de Sitter case), the Friedmann equation is

$$\dot{R}^2 - \frac{8\pi G}{3} \frac{\rho_0 R_0^3}{R^3} R^2 = 0 \tag{7.69}$$

For 
$$k = 0$$
:  $\Omega = 1$  and

$$\frac{8\pi G\rho_0}{3} = \Omega_0 H_0^2 R_0^3 = H_0^2 R_0^3 \tag{7.70}$$

Therefore, the Friedmann eq. is

$$\dot{R}^2 - \frac{H_0^2 R_0^3}{R} = 0 \implies \frac{\mathrm{d}R}{\mathrm{d}t} = H_0 R_0^{3/2} R^{-1/2}$$
 (7.71)

Separation of variables and setting  $R(\mathbf{0}) = \mathbf{0}$ ,

$$\int_0^{R(t)} R^{1/2} \, \mathrm{d}R = H_0 R_0^{3/2} t \quad \Longrightarrow \quad \frac{2}{3} R^{3/2}(t) = H_0 R_0^{3/2} t \quad \Longrightarrow \quad R(t) = R_0 \left(\frac{3H_0}{2} t\right)^{2/3} (7.72)$$

Therefore, for k= 0, the universe expands until  $\infty$ , its current age  $(R(t_0)=R_0)$  is given by

$$t_0 = \frac{z}{3H_0}$$

(7.73)

33

Reminder: The Hubble-Time is  $H_0^{-1} = 9.78 \, \mathrm{Gyr}/h.$ 

7–33

7-32

For the matter dominated, closed case, Friedmann's equation is

$$\dot{R}^2 - \frac{8\pi G}{3} \frac{R_0 R_0^3}{R} = -c^2 \iff \dot{R}^2 - \frac{R_0^2 R_0^3 \Omega_0}{R} = -c^2$$
  
$$\dot{R}^2 - \frac{H_0^2 A^2 \Omega_0}{R_0^3 (\Omega - 1)^{3/2}} \frac{1}{R} = -c^2$$

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

which is equivalent to

(7.66)

Inserting  $R_0$  from Eq. (7.68) gives

 $\frac{\mathrm{d}R}{\mathrm{d}t} = c \left(\frac{\xi}{R} - 1\right)^{1/2} \quad \text{with} \quad \xi = \frac{c}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}}$ With the boundary condition R(0) = 0, separation of variables gives

 $dt = \int_0^{R(t)} \frac{\mathrm{d}R}{(\xi/R-1)^{1/2}} = \int_0^{R(t)} \frac{\sqrt{R}}{(\xi-R)^{1/2}}$ Integration by substitution gives the "cycloid solution"

 $R = \xi \sin^2 \frac{\theta}{2} = \frac{\xi}{2} (1 - \cos \theta) \quad \text{and} \quad ct = \frac{\xi}{2} \left( \theta - \sin \theta \right)$ 

The age of the universe,  $t_0$ , is obtained by solving where  $\theta$  is an implicit parameter.

 $R_0 = \frac{c}{H_0(\Omega_0 - 1)^{1/2}} = \frac{\xi}{2} (1 - \cos \theta_0) = \frac{1}{2} \frac{c}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}} \left(1 - \cos \theta_0\right)$ in 0 = 2 /0 - 4  $a_{1} = 2 - \Omega_0$ (remember Eq. 7.68!). Therefore

$$\cos \theta_0 = \frac{1}{\Omega_0} \iff \sin \theta_0 = \frac{1}{\Omega_0} \qquad (3.78) \text{ gives}$$
Is the into Eq. (7.78) gives
$$t_0 = \frac{1}{2M_0} \frac{\Omega_0}{(10_0 - 1)^{3/2}} \left[ \operatorname{arccos} \left( \frac{2 - \Omega_0}{\Omega_0} \right) - \frac{2}{\Omega_0} \sqrt{\Omega_0 - 1} \right]$$

(7.82) The cycloid solution shows that for  $\Omega > 1$ , the universe has a finite lifetime, i.e., it expands to a maximum and then becomes smaller and cles in a "big crunch". The max expansion occurs at  $\theta = \pi$ , with a maximum scale factor of  $R_{\max} = \xi = \frac{c}{H_0} \frac{\Omega_0}{(\Omega_0-1)^{3/2}}$ 

7-33

The big crunch will happen at  $heta=2\pi,$  such that the lifetime of the closed universe is

 $t_{\rm life}=\frac{\pi}{H_0}\;\frac{\Omega_0}{(\Omega_0-1)^{3/2}}$ 

(7.83)



17

Dynamics

Summary

For the matter dominated case, our results from Eqs. (7.78), and (7.86) can be written with the functions  $S_{\rm F}$  and  $C_{\rm F}$  (Ea. 7.24) in form of the cvcloid solution:

|                 | a = b + b + b + b + b + b + b + b + b + b                                                                     |           |
|-----------------|---------------------------------------------------------------------------------------------------------------|-----------|
|                 | $R = k\mathscr{R} \left( 1 - C_k(	heta)  ight) \ ct = k\mathscr{R} \left( 	heta - S_k(	heta)  ight)$          | (7.89)    |
| with            | $\int \sin \theta \qquad \qquad \int \cos \theta  \text{for } k = +1$                                         |           |
|                 | $S_k(	heta) = \left\{ eta \qquad 	ext{and}  C_k(	heta) = \left\{ eta \qquad 	ext{for } k = eta  ight.  ight.$ | (7.24)    |
|                 | $\left(\sinh\theta\right) \qquad \left(\cosh\theta  \text{for } k = -1\right)$                                |           |
| and where the   | characteristic radius, $\mathscr{R}$ , is given by                                                            |           |
|                 | $\mathscr{R}=rac{c}{H_0}rac{\Omega_0/2}{(k\left(\Omega_0-1 ight))^{3/2}}$                                   | (06.2)    |
| Votes:          |                                                                                                               |           |
| 1. Eq. (7.89) ( | can also be derived as the result of the Newtonian collapse/expansion of                                      | a spheri- |

- cal mass distribution.
  - 2.  $\theta$  is called the development angle, it is equal to the *conformal time* (Eq. (7.32)).

Dynamics

18



7-38

7–39

Silk, J., 1997, A Short History of the Universe, Scientific American Library 53, (New York: W. H. Freeman)



| H <sub>5</sub> /Galaxy Luminosity Function | Tully-Fisher                                                                                        | 10 Mpc LSC Cepheids Red SG                                               | 1 Mpc Local Group Cepheids                   | 100 kpc                                              | LMC/SMC Cepheids 1987 A                 | 10 kpc Glob. Cluster RR Lyr           | Ky W dy I kpc Custer Cepheids RR Lyr Stat. Parall. ▲       | Mil Pleades                  | 100 pc                                                                  | Parallax Hyades                               | (after Jacoby et al., 1992, Fig. 1) |   | Units        | Basic unit of length in astronomy: Astronomical Unit (AU). | Colloquial Definition: 1 AU = mean distance Earth-Sun.                                            | Measurement: (Venus) radar ranging, interplanetary satellite positions. | $\chi^2$ minimization of N-body simulations of solar system                                  |           | $1 \text{ AU} \sim 149.6 \times 10^{\circ} \text{ km}$ |             | In the astronomical system of units (IAU 1976), the AU is defined via Gaussian gravitational c | stant $(k)$ , where the acceleration | $\ddot{\Gamma} = -\frac{\kappa^2 \Gamma}{2}$ | where $k := 0.01720209895$ , leading to $a_{\oplus} = 1.00000105726665$ , and 1 AU=1.4959787066 | 10 <sup>11</sup> m (Seidelmann, 1992). | Donnend for this definition. Is much hotter known them ( |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|---|--------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|--|
| Classical Cosmology                        | To understand what universe we live in, we need to determine observationally the following numbers: | 1. The Hubble constant, $H_0$ $\implies$ Requires distance measurements. | 2. The current density parameter, $\Omega_0$ | $\implies$ Requires measurement of the mass density. | 3. The cosmological constant, $\Lambda$ | ⇒ Requires acceleration measurements. | 4. The age of the universe, $t_0$ , for consistency checks | → Requires age measurements. | The determination of these numbers is the realm of classical cosmology. | First part: Distance determination and $H_0!$ | Classical Cosmology                 | Ĩ | Introduction | Distances are required for determination of $H_0$ .        | $\Longrightarrow$ Need to measure distances out to ${\sim}200{ m Mpc}$ to obtain reliable values. | To get this far: cosmological distance ladder.                          | <ol> <li>Trigonometric Parallax and Moving Cluster</li> <li>Main Sequence Fitting</li> </ol> | 3. RR Lyr | 4. Baade-Wesselink                                     | 5. Cepheids | 6. (Light echos)                                                                               | 7. Brightest Stars                   | 8. Type la Supernovae                        | 9. Iully-Fisher<br>10. Da for ellioticals                                                       | 11. Brightest Cluster Galaxies         | 12. Gravitational Lenses                                 |  |

Distance Determination



20 kpc

1000 million objects measured to I = 20

10 kpc

Horizon for proper motions accurate to 1 km/s

>20 globular clusters housands of Cepheids and RR Lyrae vithin 500 pc





r = 300 km/s at z = 0.03

Horizon for distances accurate to 10 per cen

roper motions in LMC/SMC individually to 2-3 km/s

ed to 1 part in 10<sup>6</sup>

spirál arms, and bu

GAIA:  $\sim 4 \mu$ arcsec precision, 4 color to V=20 mag,  $10^9$  objects.



Trigonometric Parallax

Best measurements to date: Hipparcos satellite (1989–1993)

- $\bullet$  systematic error of position:  ${\sim}0.5\,\text{mas}$  for stars brighter 9 mag
- effective distance limit: 1 kpc
- ullet standard error of proper motion:  ${\sim}1$  mas yr $^{-1}$
- broad band photometry
- $\bullet$  narrow band: B-V,V-J
  - magnitude limit: 12 mag
- complete to mag: 7.3–9.0

Results available at http://www.rssd.esa.int/index.php?project=HIPPARCOS

USNO - 100 Ot Hipparcos - 120 000-

Gaia - 1000 million-

best star positions •

Errors of

0.0001

0.001

0

and parallaxes

0.00001

2000

1800 Year

1600

150 BC

FK5 - 1500 CAC2 - 58 million Tycho - 1 million

0

Jenkins - 6000

Bessel - 1 star o

0.1

PPM - 400 000

Argelander - 26000

The Landgrave of Hessen - 1000

Hipparchus - 1000 stars

1000

arcsec

8-7

100

9

Flamsteed - 4000

Tycho Brahe - 1000

## Hipparcos catalogue: 118 218 objects with milliarcsecond precision.

Tycho catalogue: 2539913 stars with 20–30 mas precision, two-band photometry (99% complete down to 11 mag)

Revised Hipparcos calibration: see van Leeuwen (2007).





c

(8.5)

8-12

(8.6)

2

Interlude



| RR Lyr                  | $\sum_{i=0}^{n} \sum_{i=0}^{n} \sum_{i$ | Standard Candles: Galactic Distances<br>8–21<br>8–21<br>Brevious methods: Selection of methods for distances within Milky Way (and<br>Magellanic Clouds): Basis for extragalactic distance scale. | Primary extragalactic distance indicators: Distance can be calibrated from<br>observations <i>within</i> milky way or from theoretical grounds.<br>Primary indicators usually work within our neighborhood (i.e., out to Virgo cluster<br>at 15–20 Mpc).<br>Best example: Cepheids<br>Secondary extragalactic distance indicators: Distance calibrated from pri-<br>mary distance indicators.<br>Examples: Type la SNe, methods based on integral galaxy properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8–18<br>Baade-Wesselink | For pulsating stars: Basic principle (Baade, 1926) – Assume black body<br>$\Rightarrow$ Use color/spectrum to get $kT_{\text{eff}}$<br>$\Rightarrow$ Emitted intensity is Planckian, $B_{\nu}$<br>$\Rightarrow$ Dbserved Intensity is $I_{\nu} \propto \pi R^2_* \cdot B_{\nu}$ .<br>Radius from integrating velocity profile of spectral lines:<br>$R_2 - R_1 = p \int_{\Lambda}^2 v  dt$ (8.7)<br>( <i>p</i> : projection factor between velocity vector and line of sight).<br>Wesselink (1947): Determine brightness for times of same color<br>$\Rightarrow$ rather independent of knowledge of stellar spectrum (deviations from $B_{\nu}$ ).<br>Stars: Calibration using interferometric diameters of nearby giants.<br>Baade-Wesselink works for pulsating stars such as RR Lyr, Cepheids, Mi-<br>ras, and expanding supernova remnants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bandard Candles: Galactic Distances                                                                                                                                                               | $\sum_{i=1}^{l} \sum_{i=1}^{l} \sum_{i$ |

Standard Candles: Galactic Distances

Interlude

 $\sim$ 

5 million ly

 $Our \sim \ 12 \ Mpc-Backyard \ (\text{source: } http://www.atlasoftheuniverse.com/galgrps.html)$ 

To get a feel for the distances in our "neighborhood": 50 kpc: LMC, SMC, some other dwarf galaxies



Robert Gendler the largest astronomical picture ever taken, 21904  $\times$  14454 pixels

(groups similar to local group: a few large spirals, plus smaller stuff). 2-3 Mpc: Sculptor and M81 group





Loke Kun Tan





Adam Block/NOAO/AURA/NSF





15-20 Mpc: Virgo cluster.





Standard Candles: Extragalactic



Standard Candles: Extragalactic

Standard Candles: Extragalactic

ശ





The VLT Looks Deep into a Spiral Galaxy



C ESO European Southern Obs

ESO PR Photo 20/98 (23 June 1998)

<sup>-</sup>or many years, the distance to the LMC was less well known than desirable.

Now best value: 18.39  $\pm$  0.06 mag (Freedman & Madore, 2010)

laxes



Standard Candles: Extragalactic

18

(ярят)і

22

20

16

4.5

(m-M)(Ceph)-I(TRGB)

3.5

ഹ

Standard Candles: Extragalactic



Standard Candles: Extragalactic

Standard Candles: Extragalactic





SN1994d (HST WFPC)





Rough classification
 Rough classification
 (Minkowski, 1941):
 Type I: no hydrogen
 in spectra;
 (d) subtypes la, lb, lc
 Type II: hydrogen
 tweek

II-L, II-P Note: pre 1985 subtypes la, Ib had different definition than today ⇒ beware when reading older texts.



Standard Candles: Extragalactic



(SN 1998bu in M96, Jha et al., 1999, Figs. 2 and 4)



31

Lightcurves of Hamuy et al. SN Ia sample (18 SNe discovered within 5d past maximum, with  $3.6 < \log cz < 4.5$ , i.e., z < 0.1)

Cosmology Project

09

40

days 20

0

-20 -15

Calan/Tololo SNe Ia

8-60



Standard Candles: Extragalactic

34

Standard Candles: Extragalactic

|                                                                                                                                 | 8-8<br>                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |                                                                                                                                                                                                                                                                   |
|                                                                                                                                 | Observational version of the fundamental plane relationship: Instead of inserting $r_0$ and $I_0$ , measure diameter $D_n$ of aperture to reach some mean surface brightness (tronically sky brightness 20.75 mag arcsec <sup>-2</sup> in R), and use calibration |
| "Faber-Jackson" law for<br>elliptical galaxies:<br>The luminosity <i>L</i> of an elliptical<br>galaxy scales with fis intrinsic | Note: Assumptions are<br>N = M/L same everywhere.<br>2. ellipticals have same stellar population everywhere                                                                                                                                                       |
| velocity dispersion, $\sigma$ , as $L \propto \sigma^4$ .<br>Note that ellipticals have virtually no                            | Calibration paper: Kelson et al. (2000).                                                                                                                                                                                                                          |
| Hydrogen<br>=> cannot use 21 cm.                                                                                                |                                                                                                                                                                                                                                                                   |
| M32 (companion of Andromeda).                                                                                                   |                                                                                                                                                                                                                                                                   |
| courtesy W. Keel                                                                                                                |                                                                                                                                                                                                                                                                   |
| Ellipticals: $M_{\rm B} = -19.38 \pm 0.07 - (9.0 \pm 0.7)(\log \sigma - 2.3)$ (8.24)                                            |                                                                                                                                                                                                                                                                   |
| Lenticulars (Type S0): $M_{\rm B} = -19.65 \pm 0.08 - (8.4 \pm 0.8) (\log \sigma - 2.3)$ (8.25)                                 | Standard Candles: Extragalactic 39                                                                                                                                                                                                                                |
| 8-67                                                                                                                            |                                                                                                                                                                                                                                                                   |
| $D_{n}$ - $\sigma$                                                                                                              | Path to H <sub>0</sub>                                                                                                                                                                                                                                            |
| The Faber-Jackson law is a specialized case of the more general $D_n - \sigma$ -relation:                                       | To obtain $H_0$ , we need distances, and redshifts.                                                                                                                                                                                                               |
| The intensity profile of an elliptical galaxy is given by de Vaucouleurs' $r^{1/4}$ law:                                        | Redshifts: Trivial                                                                                                                                                                                                                                                |
| $I(r) = I_0 \exp\left(-(r/r_0)^{1/4}\right) \implies L = \int I \propto I_0 r_0^2 $ (5.6)                                       | Distances: Hubble Space Telescope Key Project on Extragalactic Distance<br>Scale, Megamaser Cosmology Project.                                                                                                                                                    |
| Because of the virial theorem ( $E_{ m kin}=-E_{ m pot}/2$ ):                                                                   | Summary papers: Freedman et al. (2001), (Freedman & Madore, 2010)                                                                                                                                                                                                 |
| $\frac{1}{2}m\sigma^2 = G\frac{mM}{2} \iff \sigma^2 \propto \frac{M}{2} \tag{8.26}$                                             | Strategy:                                                                                                                                                                                                                                                         |
| where $\sigma$ : velocity dispersion.                                                                                           | 1. Use high-quality candles: Cepheid variables as primary distance calibrator.<br>2. Calibrate secondary calibrators that work out to $cz=10000$ km s $^{-1}$ .                                                                                                   |
| Assume a mass-to-light ratio                                                                                                    | Tully-Fisher,                                                                                                                                                                                                                                                     |
| $M/L \propto M^{lpha}$ (8.27)                                                                                                   | <ul> <li>Type la Supernovae,</li> </ul>                                                                                                                                                                                                                           |
| $(lpha \sim$ 0.25). and use $r_0$ from Eq. (5.6) to obtain                                                                      | Surface Brightness Fluctuations,                                                                                                                                                                                                                                  |
| $L^{1+lpha} \propto \sigma^{4-4lpha} I_0^{lpha-1}$ (8.28)                                                                       | <ul> <li>Fundamental-plane for Ellipticals.</li> <li>Combine uncertainties from these methods.</li> </ul>                                                                                                                                                         |
| This is called the "fundamental plane" relationship (Dressler et al., 1987).                                                    |                                                                                                                                                                                                                                                                   |

Standard Candles: Extragalactic

Hubble Constant

To get feeling for  $v_{\rm G}$  out to Virgo, need to study local velocity field surrounding local group and 1. Virgocentric infall (known since mid-1970s) plus virialized galaxy motions within clusters. 2. Motion towards great attractor ("Seven Two major velocity components: The constellation Crater ("Becher") in Johan Elert Bode's Sternatlas (after Slawik/Reichert, Atlas der Sternbilder, Spektrum, 2004) Samurai", 1980) Velocity Field beyond. ASSERSCHLANG -SGX ) © 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () 00 () () 00 () () 00 () () 90° from Virgo Virgo direction -+SGX 2000 C 2000 -2000 ∧<sup>רפ</sup> (8.30) 2 8-70 (8.29) Older galaxy catalogues often attempt to correct the measured values of z to produce "corrected Before determining  $H_0$ : correct for influence of velocity field (cluster motion with ⇒ correction not used in recent redshift surveys! (see Harrison & Noonan, 1979, for details) since  $v_0$  was not well known before COBE  $\Longrightarrow$  introduces unnecessary problems  $\Rightarrow \qquad z_{\mathsf{R}} \sim z + \frac{v_0}{c}$  $1 + z = (1 + z_{\mathsf{R}}) \left( 1 - \frac{v_0}{c} + \frac{v_{\mathsf{G}}}{c} \right)$ (COBE DMR; Bennett et al., 1996)  $1 + z = (1 + z_{R}) \left( 1 + \frac{v_{0}}{c} \right) \sim 1 + z_{R} - \frac{v_{0}}{c}$  $v_0$ : observer's radial velocity in direction of galaxy Velocity Field vg: radial velocity of the galaxy, difficult to find respect to comoving coordinates). The observed redshift is given by redshifts", e.g., by setting  $v_{\rm G}=0$  and z<sub>R</sub>: cosmological redshift Hubble Constant where

8-73

 $\Delta T=3.353\pm0.024$  mK of 3K black-body spectrum of  $T=2.725\pm0.020$  K, using  $\Delta T/T=v/c.$  $v_0$  is easy to find  $\Longrightarrow$  Measure velocity of Earth with respect to 3 K radiation. COBE finds

 $v_0 = (369.1 \pm 2.6) \,\mathrm{km \, s^{-1}} \cdot \cos \theta_{\mathrm{CMB}}$ 

where  $\theta_{\text{CMB}} = \angle(\mathbf{v}, \mathbf{v}_{\text{CMB}}),$  and  $\mathbf{v}_{\text{CMR}}$  points towards

 $(\alpha, \delta)_{\rm J2000.0} = (11^{\rm h}12^{\rm m}2 \pm 0^{\rm m}8, -7^{\rm o}06 \pm 0^{\rm o}16)$  $(l,b) = (264^{\circ}\!26 \pm 0^{\circ}\!33, 48^{\circ}\!22 \pm 0^{\circ}\!13)$ 

Hubble Constant

Galaxy moves within local group with  $v\sim 630\,{
m km\,s^{-1}}$ 

components plus Hubble flow. See Tonry et al.

(2000) for details.

20

-20

40

-2000

(8.31)

D (Mpc)

General analysis: build maximum likelihood

+SGY

-SGY

С

∧<sup>רפ</sup>

model of velocity field including above





(v wrt. center of local group; not taking et al. 2000 find slightly different values); et al., 2000b, Tab. A1, note that Tonry  $12^{h}28^{m} + 12^{\circ}40'$  $13^{h}20^{m} + 44^{\circ}00'$ Shapley 13<sup>h</sup>30<sup>m</sup> +31°00' Hubble flow into account!).  $\alpha_{1950.0}$ Virgo Чð

2000

40

20 (odM) "YDS"

5000 4000

80

60

(Tonry et al., 2000, Fig. 20)

9

20

"SGX" (Mpc) -20

38

-40

-20

4. Regression Analysis  $\implies H_0$  $H_0 = 75\pm10\,{
m km\,s^{-1}\,Mpc^{-1}}$ 2. Determine "v", corrected for 1. Determine d with Cepheids Value from HST Key Project: 3. Draw Hubble-diagram local velocity field To obtain  $H_0$ : and HST 8 H from HST Hubble Diagram for Cepheids (flow-corrected) 5 5 83 20 Distance [Mpc] Freedman et al. (2001, Fig. 1) 10 -500 Velocity [km/s] 0 2000 500 1500







Before we understand why: Need to understand the Big-Bang itself! deviations from Hubble-Relation! For larger distances: There are

Blakeslee, J., Ajhar, E. A., & Tonry, J. L. 1999, in Post-Hipparcos Cosmic Candles, ed. A. H.. F. Caputo, (Dordrecht: Kluwer), 181, astro-ph/9807124 Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Nature, 400, 539 Ferrarese, L., Mould, J. R., Kennicutt, Jr., R. C., et al. 2000, ApJ, 529, 745 Braatz, J. A., Reid, M. J., Humphreys, E. M. L., et al. 2010, ApJ, 718, 657 Gibson, B. K., Stetson, P. B., Freedman, W. L., et al. 2000, ApJ, 529, 723 Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2007, AJ, 133, 1810 Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, ApJ, 553, 47 Kelson, D. D., Illingworth, G. D., Tonry, J. L., et al. 2000, ApJ, 529, 768 Bennett, C. L., Banday, A. J., Górski, K. M., et al. 1996, ApJ, 464, L1 Jacoby, G. H., Branch, D., Clardullo, R., et al. 1992, PASP, 104, 599 Jha, S., Garnavich, P. M., Kirshner, R. P., et al. 1999, ApJS, 125, 73 Gieren, W. P., Gómez, M., Storm, J., et al. 2000, ApJS, 129, 111 Ajhar, E. A., Lauer, T. R., Tonry, J. L., et al. 1997, AJ, 114, 626 Kim, A. G., Gabi, S., Goldhaber, G., et al. 1997, ApJ, 476, L63 Abraham, R. G., & van den Bergh, S. 1995, ApJ, 438, 218 Freedman, W. L., & Madore, B. F. 2010, ARA&A, 48, 673 Harrison, E. R., & Noonan, T. W. 1979, ApJ, 232, 18 Fenkart, R. F., & Binggeli, B. 1979, ApJS, 35, 271 Lee, J.-W., & Carney, B. W. 1999, ApJ, 117, 2868 Filippenko, A. V., 1997, ARA&A, 35, 309 Feast, M., 1999, PASP, 111, 775

8-79

Seidelmann, P. K., (eds.) 1992, Explanatory Supplement to the Astronomical Almanac, (Mill Valley, CA: University Science Books) Rowan-Robinson, M., 1985, The Cosmological Distance Ladder, (New York: Freeman) Mould, J., Kennicutt, Jr., R. C., & Freedman, W. 2000a, Rep. Prog. Phys., 63, 763 Mould, J. R., Huchra, J. P., Freedman, W. L., et al. 2000b, ApJ, 529, 786 Sakai, S., Mould, J. R., Hughes, S. M. G., et al. 2000, ApJ, 529, 698 Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995, Nature, 373, 127 Phillips, M. M., Lira, P., Suntzeff, N. B., et al. 1999, AJ, 118, 1766 Straniero, O., Chieffi, A., & Limongi, M. 1997, ApJ, 490, 425

Tonry, J. L., Blakeslee, J. P., Ajhar, E. A., & Dressler, A. 2000, ApJ, 530, 625

van Leeuwen, F., 2007, A&A, 474, 653

8-79