Stars

What are stars?

Most important building blocks of the universe: stars
Proper definition:
Stars are gas balls consisting mainly of hydrogen and helium, which produce energy by fusion.

Will now look at observable properties of stars:

1. Distance
2. Luminosity
3. Brightness
4. Masses
... and later deduce how they live from these data.

Direct distance measurements: parallax measurement:
\Longrightarrow Measure stellar position several times over year with respect to background stars.
Parallax angle (small angle approximation):

$$
p=\frac{1 \mathrm{AU}}{d}
$$

(p is measured in radians)
Typical values for p are arcseconds
\Longrightarrow define distance unit "Parsec" ("parallax second") such that $d=1 \mathrm{pc}$ for $p=1^{\prime \prime}$:

The parsec is the distance at which 1 AU subtends an angle of $1^{\prime \prime}$.

Zeilik \& Gregory use π instead of p for the parallax. .
the university of
WARWICK

Distances, II

How far is one parsec?

From $p=1 \mathrm{AU} / d$ follows with $p=1^{\prime \prime}$:

$$
d=1 \mathrm{pc}=\frac{1 \mathrm{AU}}{1^{\prime \prime}}=\frac{1 \mathrm{AU}}{\pi /(180 \cdot 3600)}=206264 \mathrm{AU}=3.086 \times 10^{16} \mathrm{~m} \sim 3.26 \mathrm{ly}
$$

Note: If parallax p is known and given in arcseconds, then distance can be immediately computed:

$$
\frac{d}{1 \mathrm{pc}}=\frac{1}{p / 1^{\prime \prime}} \text { or (sloppy notation) } d=\frac{1}{p}
$$

Today: positional accuracy $\sim 0.01^{\prime \prime}$ from ground, and better than 1 mas ($10^{-3 / \prime}$) from space \Longrightarrow can measure parallax out to $\sim 1 \mathrm{kpc}$
further out: "secondary distance estimators" \Longrightarrow see later lectures

Definition: Luminosity of a star:
The total energy emitted by a star per second is called its luminosity.
(=the luminosity is a power)

In astronomy, luminosities are often measured in units of the solar luminosity,

$$
L_{\odot}=3.90 \times 10^{26} \mathrm{~J} \mathrm{~s}^{-1}=3.90 \times 10^{26} \mathrm{~W}
$$

Assumption: star emits its radiation isotropically.

Flux: energy passing per second through area of $1 \mathrm{~m}^{2}$ at distance r :

$$
F=\frac{L}{4 \pi r^{2}}
$$

(unit: Wm^{-2}).

Fluxes from stars (apart from the Sun) are very small.
Example: α Centauri (closest star to the Sun).

- distance: $1.3 \mathrm{pc} \sim 4 \times 10^{16} \mathrm{~m}$
- luminosity: similar to the Sun $\left(4 \times 10^{26} \mathrm{~W}\right)$.

First classification of stars:

- Stars of "magnitude 1": brightest (visible) stars
- Stars of "magnitude 6": faintest (visible) stars

Hipparchus
(??-~127 BC)

Pogson (1865): Eye sensitivity is logarithmic, such that
A brightness difference of 5 magnitudes corresponds to a ratio of 100 in detected flux

So, if magnitudes of two stars are m_{1} and m_{2}, then

$$
\frac{f_{1}}{f_{2}}=100^{\left(m_{2}-m_{1}\right) / 5}
$$

This means:

$$
\log _{10}\left(f_{1} / f_{2}\right)=\frac{m_{2}-m_{1}}{5} \log _{10} 100=\frac{2}{5}\left(m_{2}-m_{1}\right)
$$

or

$$
m_{2}-m_{1}=2.5 \log _{10}\left(f_{1} / f_{2}\right)=-2.5 \log _{10}\left(f_{2} / f_{1}\right)
$$

Note: Larger Magnitude = FAINTER Stars

Observational Properties
the university of
WARWICK

Luminosity (revisited)

Inverse square law links flux f at distance d to flux F measured at another distance D :

$$
\frac{F}{f}=\frac{L / 4 \pi D^{2}}{L / 4 \pi d^{2}}=\left(\frac{d}{D}\right)^{2}
$$

Convention: to describe luminosity of a star, use the absolute magnitude M, defined as magnitude measured at distance $D=10 \mathrm{pc}$.

Therefore,

$$
m-M=2.5 \log (F / f)=2.5 \log (d / 10 \mathrm{pc})^{2}=5 \log d-5
$$

$m-M$ is called the distance modulus, d is measured in pc .

5-20

Masses, XIII

Mizar A and B are rather typical stars:
$50 \%-80 \%$ of all stars in the solar neighbourhood belong to multiple systems.

Rough classification:
apparent binaries: stars are not physically associated, just happen to lie along same line of sight ("optical doubles").
visual binaries: bound system that can be resolved into multiple stars (e.g., Mizar); can image orbital motion, periods typically 1 year to several 1000 years.
spectroscopic binaries: bound systems, cannot resolve image into multiple stars, but see Doppler effect in stellar spectrum; often short periods (hours. . . months).

Potpourri of observed binary star orbits.

Towards Earth

View from Earth

$i=70 \mathrm{deg}$

View from the side

Problem when analysing orbits: orientation of orbit in space: "inclination"

In simplest case: real semimajor axis:

$$
a_{\text {observed }}=a_{\text {real }} \cos i
$$

Inclination typically found using Kepler's 2nd law plus geometry...

To determine stellar masses, use Kepler's 3rd law:

$$
\frac{a^{3}}{P^{2}}=\frac{G}{4 \pi^{2}}\left(m_{1}+m_{2}\right)
$$

where

- $M_{1,2}$: masses
- P : period
- a semimajor axis

Observational quantities:

- P - directly measurable
- a - measurable from image if and only if distance to binary and the inclination is known

Masses, XVIII

From Kepler's 3rd law, can determine $M_{1}+M_{2}$.
Need to determine individual masses, M_{1} and M_{2} :
\Longrightarrow use center of mass (CM):

$$
M_{1} a_{1}=M_{2} a_{2} \text { such that } \frac{M_{1}}{M_{2}}=\frac{a_{2}}{a_{1}}
$$

where a_{1}, a_{2} : semi-major axes of orbits around CM (observable from imaging).

For spectroscopic binaries: can only measure radial velocity along line of sight For circular orbit, angle θ on orbit:

$$
\theta=\omega t
$$

where $\omega=2 \pi / P$.
Observed radial velocity:

$$
v_{\mathrm{r}}=v \cos (\omega t)
$$

If orbit has inclination i, then

$$
v_{\mathrm{r}}(t)=v \sin i \cos (\omega t)
$$

From observation of $v_{\mathbf{r}}(t) \Longrightarrow v \sin i$.
("velocity amplitude")

Motion of star visible through Doppler shift in stellar spectrum:
$\frac{\Delta \lambda}{\lambda}=\frac{v_{r}}{c}=\frac{v}{c} \sin i \cos \omega t$
For almost all stars, classical Doppler effect is enough; once $v \gtrsim 0.1 c$, however, use relativistic Doppler effect,

$$
\nu_{\mathrm{obs}}=\nu_{\mathrm{em}} \sqrt{\frac{1+v / c}{1-v / c}}
$$

HDE 226868/Cyg X-1; Pottschmidt (2001)

If only one star visible: can only determine limits for mass: mass function

$$
\frac{P v_{\mathrm{obs}}^{3}}{2 \pi G}=\frac{M_{2}^{3} \sin ^{3} i}{\left(M_{1}+M_{2}\right)^{2}}=: f_{\mathrm{M}}
$$

(see handout)
with observables:

- $v_{\text {obs }}$: (velocity amplitude of M_{1})
- P : period
and unknowns:
- M_{1} : mass of "primary star"
- M_{2} : mass of (unseen) "secondary star"
- i : inclination
$\Longrightarrow f_{\mathrm{M}}$ is lower limit for M_{2}, since for $M_{1}=0, M_{2}=f_{\mathrm{M}} / \sin ^{3} i \geq f_{\mathrm{M}}$ Often used for neutron star and black hole binaries. . .

Observational Properties

the university of
WARWICK

Note that the following is for your information only, you will not be tested on your ability to memorize this lengthy derivation. . .
To derive the mass function, we start as usual with Kepler's 3rd law,

$$
\frac{G}{4 \pi^{2}}\left(M_{1}+M_{2}\right)=\frac{R^{3}}{P^{2}}
$$

In the following, we will assume that we observe the spectral lines from star number 1 only.
Because of the center of mass definition,

$$
M_{1} r_{1}=M_{2} r_{2}
$$

such that

$$
R=r_{1}+r_{2}=r_{1}\left(1+\frac{r_{2}}{r_{1}}\right)=r_{1}\left(1+\frac{M_{1}}{M_{2}}\right)
$$

In the case that the orbits are circular, the velocity of the star whose spectrum we see is

$$
v_{1}=\frac{2 \pi r_{1}^{2}}{P}
$$

However, due to the unknown inclination, we only observe the radial velocity component, that is

$$
v_{\mathrm{obs}}=v_{1} \sin i
$$

In terms of the observables, r_{1} is

$$
r_{1}=\frac{P}{2 \pi} v_{1}=\frac{P}{2 \pi} \frac{v_{\mathrm{obs}}}{\sin i}
$$

such that finally

$$
R=r_{1}\left(1+\frac{M_{1}}{M_{2}}\right)=\frac{P}{2 \pi} \frac{v_{\mathrm{obs}}}{\sin i}\left(1+\frac{M_{1}}{M_{2}}\right)
$$

We can now insert R into Kepler's 3rd law:

$$
\frac{G}{4 \pi^{2}}\left(M_{1}+M_{2}\right)=\frac{1}{P^{2}} \frac{P^{3}}{(2 \pi)^{3}} \frac{v_{\mathrm{obs}}^{3}}{\sin ^{3} i}\left(1+\frac{M_{1}}{M_{2}}\right)^{3}
$$

and obtain after some straightforward algebra

$$
\frac{M_{2}^{3}}{\left(M_{1}+M_{2}\right)^{2}} \sin ^{3} i=\frac{P v_{\mathrm{obs}}^{3}}{2 \pi G}
$$

the mass function. On the right side are the observables P and v_{obs}, on the left hand side the unknowns i, M_{1}, and M_{2}.

Can now look at solar neighborhood:

- apparent magnitude m and distance \Longrightarrow luminosity
- mass from binary stars
\Longrightarrow determine mass-luminosity relationship

Application: Mass-Luminosity Relation

Empirical result:
$\frac{L}{L_{\odot}}=\left\{\begin{array}{rr}0.23\left(\frac{M}{M_{\odot}}\right)^{2.3} & \left(M<0.43 M_{\odot}\right) \\ \left(\frac{M}{M_{\odot}}\right)^{4.0} & \left(M \geq 0.43 M_{\odot}\right)\end{array}\right.$
\Longrightarrow more massive stars have extremely higher luminosities!
(factor 2 in $M \rightarrow$ factor 8 in L).
Direct consequence:
More massive stars live much shorter lives
sometimes, one also sees $L \propto M^{3.3} \ldots$

Final observable of stars: Temperature
Obtained using spectroscopy
In the following: rough outline, as stellar spectroscopy is rather complicated \Longrightarrow see module "stars" for the $\mathrm{g}(\mathrm{l})$ ory details...

Outline:

1. Planck's Radiation Laws
2. Stellar Continuum Spectra
3. Spectral Classification
... unfortunately, need to be a little bit formal first

Planck's Radiation Law, I

Stars are big glowing gas balls.
In zeroth order: thermodynamic equilibrium.
Max Planck: under these circumstances: emitted spectrum is blackbody radiation:

$$
F_{\lambda}=\frac{2 h c^{2} / \lambda^{5}}{\exp (h c / \lambda k T)-1}
$$

F_{λ} : Energy emitted per second and wavelength interval

- $h=6.623 \times 10^{-34} \mathrm{~J}$ s: Planck's constant
- $k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$: Boltzmann constant

Max Planck (1858-1947)

Planck's Radiation Law, II

Without proof, the following two important relationships hold for blackbody radiation:

Stefan-Boltzmann law: Power emitted per square-metre surface of a blackbody:

$$
P=\sigma T^{4}
$$

where $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
"hotter bodies have a much higher luminosity"
Wien's displacement law: Wavelength of maximum blackbody emission:

$$
\lambda_{\max } T=2.898 \times 10^{-3} \mathrm{mK}
$$

"hotter bodies radiate higher energetic radiation"

Stellar Spectra

the university of

WARWICK

Spectroscopy,

Quantum mechanics: atoms have discrete energy levels
Energy levels in Hydrogen:

$$
E_{n}=-\frac{2 \pi^{2} \mu e^{4}}{\hbar^{2}} \cdot \frac{1}{n^{2}} \propto-\frac{1}{n^{2}}
$$

($n \in \mathbb{N}$; Balmer formula)
2nd excited level
1st excited level
Ground level
(1eV =1 electron volt $=1.6 \times 10^{-19 \mathrm{~J})}$
(1en

In hydrogen atom: electrons typically found in ground state.
if temperature is higher, can also be in 1st excited state, but the physical principles following remain the same....

Stellar Spectra
the university of
WARWICK

5-35

Spectroscopy, III

Photon hitting atom has energy $E_{\text {phot }}=h \nu=h c / \lambda$. If $E_{\text {phot }}=E_{2}-E_{1}$, then photon can be absorbed...

Photon hitting atom has energy $E_{\text {phot }}=h \nu=h c / \lambda$. If $E_{\text {phot }}=E_{2}-E_{1}$, then photon can be absorbed. . . and electron has higher energy (is excited).

Spectroscopy, VIII

Cold gas containing
Hydrogen atoms

Emitter of continuum radiation

1. Assume stellar surface has continuum spectrum (Planck).
2. Assume surface is below atmosphere of colder gas.
\Longrightarrow Atmosphere absorbs photons at wavelengths characteristic for the elements present in stellar atmosphere.
\Longrightarrow Formation of absorption line spectrum.

N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

Absorption line spectrum of the Sun: Fraunhofer Lines

HD 12993	
HD 158659	
HD 30584	
HD116608	
HD 9547	
HD 10032	
BD 610367	
HD 28099	
HD 70178	
HD 23524	
SAO 76803	
HD 260655	
Yale 1755	
HD 94082	
SAO 81292	
HD 13256	

Annie Cannon (around 1890): Stars have different spectra.

Annie Jump Cannon (1863-1941)
Biography: http:
//www.sdsc.edu/ScienceWomen/cannon.html

Annie Jump Cannon: There are spectral types.

Henry Draper catalogues (Cannon plus ~ 10 female "computers"):
225000 spectral classifications.

Stellar Spectra

HD 12993			O6.5
HD 158659			B0
HD 30584			B6
HD116608			A1
HD 9547			A5
HD 10032	Fe	Na	F0
BD 610367			F5
HD 28099			G0
HD 70178			G5
HD 23524			K0
SAO 76803			K5
HD 260655			M0
Yale 1755		0	M5
HD 94082		F5 (but metal poor)	
SAO 81292			M4.5e
HD 13256			Ble

Annie Cannon: Strength of absorption lines varies with spectral type.

Silva \& Cornell, 1992, ApJ Suppl. 81, 865
Cecilia Payne-Gaposchkin: Spectral sequence is temperature sequence.

Stellar Spectra

Cecilia Payne-Gaposchkin (1900-1979)
Biography: http://www.harvardsquarelibrary. org/unitarians/payne2.html

BSc, Cambridge, left UK because of situation of women in astronomy
$1^{\text {st }}$ person to obtain PhD in Astronomy at Harvard: "Stellar Atmospheres, A
Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars"

Otto Struve: "undoubtedly the most brilliant Ph.D. thesis ever written in astronomy."

> Spectral types are a temperature sequence.
later: 1st female full professor at Harvard

Summary spectral classes as a temperature sequence.

O-B-A-F-G-K-M
30000 K
"early type"

plus subtypes: B0...B9,A0... A9, etc.
Sun is G2.

Note: "early" and "late" has nothing to do with age!

Hertzsprung - Russell Diagram (HRD): Stellar temperature versus stellar luminosity

- Most stars on Main Sequence ("dwarfs")

Hertzsprung - Russell Diagram (HRD): Stellar temperature versus stellar luminosity

Hertzsprung Russell Diagram

- Most stars on Main Sequence ("dwarfs")
- Stellar Luminosity:
$L=4 \pi R^{2} \sigma T^{4} \propto R^{2} T^{4}$
\Longrightarrow cold, luminous stars
are BIG
\Longrightarrow "giants"

Hertzsprung - Russell Diagram (HRD): Stellar temperature versus stellar luminosity

Hertzsprung - Russell Diagram (HRD): Stellar temperature versus stellar luminosity

Hertzsprung Russell Diagram

Combining Mass-Luminosity Relationship and HRD:

Main Sequence is a Mass Sequence

- M-Dwarfs have $M \lesssim 0.25 M_{\odot}$
- G-Stars are similar to Sun and have $M \sim M_{\odot}$
- O- and B-Stars are very massive $\left(M \gtrsim 20 M_{\odot}\right)$

HRD of Globular Cluster M5 (UNSW, Sydney)
(B-V: \sim spectral class; V is a magnitude)

Globular Clusters: HRD is very different of solar neighbourhood

MS: Main Sequence
TO: Turn-Over point
HB: Horizontal Branch
RGB: Red Giant Branch
AGB: Asymptotic Giant Branch
WD: White Dwarfs
All stars in globular cluster born at the same time
\Longrightarrow HRD shows evidence for stellar evolution

Stellar Evolution

Optical View of B68 (ESO; VLT/FORS1)

5-56

Stellar Birth, V

Stars are born in "Giant Molecular Clouds".
Pieces of cloud collapse, if mass within radius of cloud is larger than Jeans mass:

$$
M_{\mathrm{J}} \sim \frac{4 \pi}{3} R_{\mathrm{J}}^{3} \rho
$$

... which has typical values of $50-100 M_{\odot}$.
After this:
\Longrightarrow collapsing piece fragments into smaller pieces of $\sim 1 M_{\odot}$ mass (takes

$$
<10^{6} \text { years) }
$$

\Longrightarrow density in centre of each piece increases
$\Longrightarrow T \gtrsim 4 \times 10^{6} \mathrm{~K}$
\Longrightarrow nuclear fusion starts
\Longrightarrow star is formed

The following is for your information only and will not be assessed in any way:
In order to derive the Jean's mass, let's look at a simple model where a cloud in the interstellar medium is kept together by its own gravitation. Because the cloud has a temperature above absolute zero, thermal motion from the gas particles will try to disperse the cloud. The cloud is thus gravitationally only if the total energy of the gas particles, i.e., the sum of the particle kinetic energy and the gravitational binding energy, is negative:

$$
\frac{3}{2} \frac{M}{m_{p}} k T-\frac{3}{5} \frac{G M^{2}}{R} \leq 0
$$

If the energy is less than zero, the cloud is not in hydrostatic equilibrium and will collapse. This is the case if

$$
\frac{M}{R} \geq \frac{5}{2} \frac{k T}{G m_{\mathrm{p}}} \quad \text { or } \quad \frac{4 \pi}{3} \rho R^{2} \geq \frac{5}{2} \frac{k T}{G m_{\mathrm{p}}}
$$

This is true for radii greater than the Jeans length,

$$
R_{\mathrm{J}}=\sqrt{\frac{15 k T}{8 \pi G m_{\mathrm{p}} \rho}} \sim \sqrt{\frac{k T}{G m_{\mathrm{p}} \rho}}
$$

Plugging in typical values, i.e., $T \sim 50 \mathrm{~K}$, particle density $n=10^{5} \mathrm{H}$-atoms cm^{-3} (that is a mass density of $\rho=n m_{\mathrm{p}} \sim 1.7 \times 10^{-9} \mathrm{~g} \mathrm{~cm}{ }^{-3}$) gives $R_{\mathrm{J}} \sim 0.2 \mathrm{pc}$, corresponding to a Jeans mass of around 70 solar masses.

Once star has collapsed and nuclear fusion has started: main sequence

The Main Sequence is the result of steady state fusion ("burning") of hydrogen into helium in stellar centres.
... longest phase of stellar evolution (10 billion years for Sun)

Stellar structure defined by balance between pressure inwards due to gravitation and pressure outwards due to energy release ("hydrostatic equilibrium").

Nuclear fusion:

$$
4 \mathrm{p} \longrightarrow{ }_{2}^{4} \mathrm{He}+E
$$

How much energy is gained?
Particle physics: express mass as "rest energy equivalent" via $E=m c^{2}$ (and call it "mass"...).
usually use energy units of $\mathrm{MeV}, 1 \mathrm{MeV}=1.602 \times 10^{-13} \mathrm{~J}$

$$
\begin{aligned}
& \text { mass of } 4 \text { protons }(4 \times 938 \mathrm{MeV}): 3752 \mathrm{MeV} \\
& \text { - mass of }{ }_{2}^{4} \mathrm{He} \text { : } 3727 \mathrm{MeV} \\
& \text { mass defect } \Delta m c^{2} \text { : } 25 \mathrm{MeV}
\end{aligned}
$$

In the fusion of hydrogen to helium, 0.7% of the available rest mass energy is converted to energy.

Nuclear physics: efficiency of H-burning strongly depends on temperature \Longrightarrow explanation for mass-luminosity relation (massive stars have hotter cores)

Stellar Structure and Evolution

Main Sequence, III

Stellar structure governed by four coupled differential equations:

Mass structure
(mass conservation)

$$
\frac{\mathrm{d} M}{\mathrm{~d} r}=4 \pi r^{2} \rho(r)
$$

Temperature structure (energy transport)

$$
\frac{\mathrm{d} T}{\mathrm{~d} r}=-\frac{3}{4 a c} \frac{k \rho(r)}{T^{3}} \frac{L(r)}{4 \pi r^{2}}
$$

Pressure structure
(hydrostatic equilibrium)

$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\rho(r) \frac{G M(r)}{r^{2}}
$$

Energy conservation (energy transport)

$$
\frac{\mathrm{d} L}{\mathrm{~d} r}=4 \pi r^{2} \rho(r) \epsilon(r)
$$

plus "equation of state" $(P=P(T, \rho))$, energy generation $(\epsilon=\epsilon(T, \rho, Z)), \ldots$
Stellar model: numerical solution of stellar structure equations.

after Iben, 1991

Evolution of stars in the HRD from main sequence to death

Typical timescales (units of $10^{6} \mathrm{yr}$; Schaller et al. 1992):

	$1 M_{\odot}$	$5 M_{\odot}$	$25 M_{\odot}$
$\mathrm{H} \rightarrow \mathrm{He}$	10000	94	6.4
$\mathrm{He} \rightarrow \mathrm{C}$		12	0.6
$\mathrm{C}+\mathrm{C}$			0.01
PN	$\lesssim 0.01$	$\lesssim 0.01$	$\mathrm{~N} / \mathrm{A}$
WD	∞	∞	N / A

Post-H-burning burning: need higher core temperatures (Coulomb barrier!), less energy release \Longrightarrow last much shorter than hydrogen burning.

Reminder: stars: hydrostatic equilibrium, inwards gravitational pressure balanced by outwards gas pressure

For gas pressure ($P=n k T$): energy source needed to heat gas (=fusion).
End of stellar life: energy source ceases to work \Longrightarrow gravitational collapse!

BUT:

collapse cannot continue indefinitely:
increased density \Longrightarrow quantum mechanical effects become important

Different ways to write the equation of state of an ideal gas

Among the more confusing subjects of thermodynamics are the many different ways in which the ideal gas equation can be written.
The one I prefer for astronomy is

$$
P=n k T
$$

where

- P: Pressure (measured in $N \mathrm{~m}^{-1}$)
- n : particle density (i.e., number of particles per cubic metre, unit: m^{-3})
- $k=1.38066 \times 10^{-23} \mathrm{JK}^{-1}$: Boltzmann constant
- T : Temperature (measured in Kelvins)

This equation has the advantage that it counts all particles individually (thus using n). If you know the mass of the gas particles, $m_{\text {gas }}$ then another way of writing the ideal gas equation is

$$
P=\frac{n m_{\mathrm{gas}}}{m_{\mathrm{gas}}} k T=\rho k T \frac{1}{m_{\mathrm{gas}}}
$$

illustrating that for an ideal gas, $P \propto \rho$, where ρ is the mass density.
Another way to write the ideal gas equation is in terms of the total number of gas molecules, $N=n V$, where V is the volume. The ideal gas equation then is

$$
P=\frac{N}{V} k T \quad \Longleftrightarrow P V=N k T
$$

This version has the problem, however, that the number of gar molecules is typically rather large (there are 6×10^{23} molecules in a volume of 22.4 litres of gas, this number of particles is called one mole). Because working with smaller numbers is generally better, chemists prefer to work with moles. Per definition, the unit of particle number here is the Avogadro number $N_{\mathrm{A}}=6.0221 \times 10^{23}$. So, if you want to work with moles, then the above equation becomes

$$
P V=\frac{N}{N_{\mathrm{A}}} A k T=N_{\mathrm{mol}} R T
$$

Quantum mechanics: One of the weirder phenomena in QM is the Pauli exclusion principle:

For particles such as electrons ("Fermions"), at least one of their quantum numbers must be different.

Quantum numbers are, e.g.,

- position (x, y, z),
- momentum ($m v_{x}, m v_{y}, m v_{z}$),
- angular momentum,
- spin (s)

All of these numbers are "quantized", i.e., can only have discrete values (e.g., spin: $+1 / 2,-1 / 2$).

In typical gas, this is not a problem ("phase space is (almost) empty"), but once it becomes dense \Longrightarrow exclusion principle kicks in.

Stellar Structure and Evolution
the university of
WARWICK

QM interlude, VIII

Energy of electrons at the same position in space

Effect of high density on electron energy:
In degenerate electron gases, electrons have much higher energies than in thermal gas.

Interaction of electrons results in degeneracy pressure:

$$
P=\frac{\hbar^{2}}{m_{\mathrm{e}}} n_{\mathrm{e}}^{5 / 3} \propto \rho^{5 / 3}
$$

Note: The degeneracy pressure is independent of the temperature!

Sirius A+B: Chandra (X-rays; WD is bright)

McDonalds Observatory
(optical; WD is faint)

White Dwarfs:

1. End stages of evolution of stars with $M \lesssim 10 M_{\odot}$ on main sequence
2. typically $M \sim 0.8 M_{\odot}$, and always
$M<1.44 M_{\odot}$ (Chandrasekhar mass; above that: relativistic degenerate gas ($P \propto \rho^{4 / 3}$), can show that under these circumstances WD is not stable.
3. mainly consist of C and O
4. Radius ~ Earth
5. Typical density $\rho \sim 10^{6} \mathrm{~g} \mathrm{~cm}^{-3}$
6. interior temperature $\sim 10^{7} \mathrm{~K}$, atmosphere $\sim 10^{4} \mathrm{~K}$, slowly cooling down (observable for $\gtrsim 10^{9}$ years).

Type II SN2001cm in NGC5965 (2.56 m NOT, Håkon Dahle; NORDITA)

Evolution of more massive stars: fusion up to ${ }^{56} \mathrm{Fe}$, then no energy gain
$\Longrightarrow \mathrm{no}$ nressure balance in centre \Longrightarrow sunernova exnosion of tyne II.
energy release: $10^{46} \mathrm{~W}\left(10^{20} L_{\odot}\right.$; about 1% in light, rest in neutrinos)

(ESO VLT/FORS 2)
Crab nebula: young remnant of SN of 1054, observed light due to synchrotron radiation (radiation emitted by electrons accelerated in
magnetic field)

5000-10000 year old IC 1340/Veil Nebula/Cygnus Loop (©Loke Kun Tan)
Older supernova remnants: "wispy structure" due to interaction with interstellar medium, radiation (line emission) mainly caused by heating due to shocks.

During SN explosion:
Core of exploding star above Chandrasekhar limit \Longrightarrow core collapses
Densities get so high that neutronization sets in:

$$
\mathrm{p}+\mathrm{e}^{-} \longrightarrow \mathrm{n}+\nu_{\mathrm{e}}
$$

General properties:

- Pressure mainly through degenerate neutrons (similar to degenerate electrons for WD!).
- Typical density: $\rho \sim 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ (nuclear densities)
- Typical radius: 10... 15 km (Coventry!)
- surface gravity $\sim 10^{11} \times$ Earth
- Detailed structure not yet fully understood,

Neutron Stars: Rotation, III

During SN collapse, angular momentum is conserved (Explosion: symmetric) Total angular momentum of homogeneous sphere:

$$
J=I \omega \quad \text { where } \quad I=\frac{2}{5} M R^{2}
$$

Angular momentum conservation $\left(J_{\text {before }}=J_{\mathrm{Ns}}\right)$:

$$
\frac{2}{5} M_{\text {before }} R_{\text {before }}^{2} \omega_{\text {before }}=\frac{2}{5} M_{\mathrm{NS}} R_{\mathrm{NS}}^{2} \omega_{\mathrm{NS}}
$$

or (assume $M_{\text {NS }}=M_{\text {before }}$):

$$
\omega_{\mathrm{NS}}=\left(\frac{R_{\text {before }}}{R_{\mathrm{NS}}}\right)^{2} \omega_{\text {before }} \quad \text { or } \quad P_{\mathrm{NS}}=\left(\frac{R_{\mathrm{NS}}}{R_{\text {before }}}\right)^{2} P_{\text {before }}
$$

(where P : rotation period)
Example: $R_{\text {before }}=700000 \mathrm{~km}$ (sun), $R_{\text {NS }}=15 \mathrm{~km}, P_{\text {Sun }}=27 \mathrm{~d} \Longrightarrow P_{\text {NS }}=0.001 \mathrm{~s}$

Neutron Stars are extremely fast rotators.

Axis of
Rotation

Radiation beam beam

Another conserved observable:
magnetic flux: $\Phi=B R^{2}$
magnetic field after SN:

$$
B_{\mathrm{NS}}=\left(\frac{R_{\text {before }}}{R_{\mathrm{NS}}}\right)^{2} B_{\text {before }}
$$

\Longrightarrow neutron stars have strong magnetic fields (typical: $B \sim 10^{6} \ldots 10^{8} \mathrm{~T}$)

Radio pulsars are fast rotating neutron stars with strong magnetic fields.
"Lighthouse model" for pulsars

Black Holes, I

Neutron stars also have upper mass limit: Oppenheimer Volkoff limit.

Detailed mass limit unknown, causality considerations give $M \sim 3 M_{\odot}$ (for "stiff equation of state" the sound speed becomes greater than speed of light at this mass)

Compact objects with mass above Oppenheimer Volkoff limit: Black Holes

More conservative astronomers: "Black Hole Candidates".

Rev. John Michell: Phil. Trans. R. Soc. London, 74, 35-57 (1784):
if the femi-diameter of a fphære of the fame denfity with the fun were to exceed that of the fun in the proportion of 500 to 1 ,
all light emitted from fuch a body would be made to return towards it, by its own proper gravity.

In more modern usage:
Total energy of a mass m :

$$
E=E_{\mathrm{pot}}+E_{\mathrm{kin}}=-G \frac{M m}{R}+\frac{1}{2} m v^{2}
$$

Mass m is unbound if $E>0$, i.e., for

$$
v \geq v_{\text {escape }}=\sqrt{\frac{2 G M}{R}}
$$

Black Hole: Body of mass M and radius R for which $v_{\text {escape }}>c$, where c is the speed of light.

This is the case if

$$
R \leq R_{\mathrm{S}}=\frac{2 G M}{c^{2}} \sim 3 \mathrm{~km} \frac{M}{M_{\odot}}
$$

the Schwarzschild Radius.

Astrophysical energy sources:

1. Nuclear fusion

Reactions à la

$$
4 \mathrm{p} \longrightarrow{ }^{4} \mathrm{He}+\Delta E_{\text {nuc }}
$$

Energy released:
Fusion produces $\sim 6 \times 10^{11} \mathrm{Jg}^{-1}$
(i.e., $\Delta E_{\text {nuc }} \sim 0.007 m_{p} c^{2}$)

2. Gravitation

Accretion of mass m from ∞ to R_{S} on black hole with mass M gives

$$
\Delta E_{\mathrm{acc}}=\frac{G M m}{R_{\mathrm{S}}} \text { where } R_{\mathrm{S}}=\frac{2 G M}{c^{2}}
$$

Accretion produces $\sim 10^{13} \mathrm{~J} \mathrm{~g}^{-1}$
\Longrightarrow Accretion of material is the most efficient astrophysical energy source.
...thus accreting objects are the most luminous in the whole universe.
Note: energy gets radiated away from outside the Schwarzschild radius!

Stars end their lifes as one of three kinds of compact objects:
White Dwarf: $R \sim R_{\text {Earth }}, \rho \sim 10^{5 \ldots .6} \mathrm{~g} \mathrm{~cm}^{-3}$
$M<1.44 M_{\odot}$ (Chandrasekhar Limit)
Equilibrium between gravitation and pressure of degenerate electrons
Neutron Star: $R \sim 10 \mathrm{~km}, \rho \sim 10^{13} \ldots 10^{16} \mathrm{~g} \mathrm{~cm}^{-3}$
$1.44 M_{\odot}<M \lesssim 3 \ldots 4 M_{\odot}$ (Oppenheimer-Volkoff Limit)
Density implies inv. β-decay ($\mathrm{p}+\mathrm{e}^{-} \rightarrow \mathrm{n}$), i.e., star has high neutron content
Black Hole: Above OV-Limit no stable configuration known
\Longrightarrow star collapses
\Longrightarrow Black Hole
$M \gtrsim 4 M_{\odot}$
Event horizon at $R_{\mathrm{S}}=2 G M / c^{2}=3\left(M / M_{\odot}\right) \mathrm{km}$ (Schwarzschild radius)

