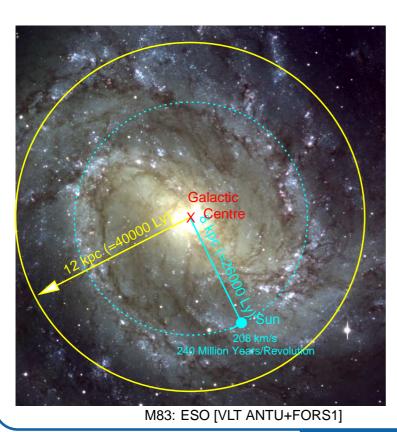
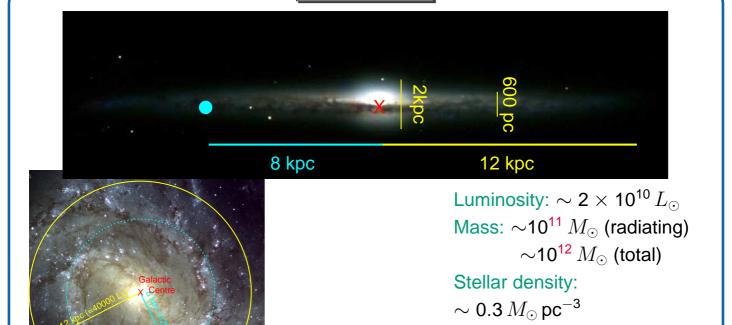

Galaxies


Optical image of the whole sky

Infrared view of the whole sky

Milky Way, III

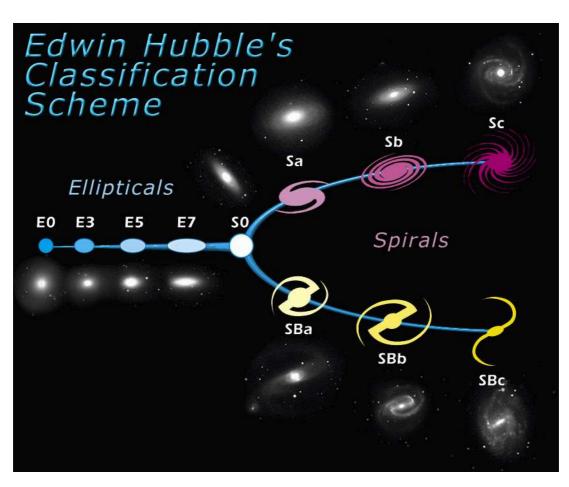

 $\begin{array}{l} \text{Luminosity:} \sim \text{2} \times \text{10}^{\text{10}} \, L_{\odot} \\ \text{Mass:} \sim \text{10}^{\text{11}} \, M_{\odot} \text{ (radiating)} \\ \sim \text{10}^{\text{12}} \, M_{\odot} \text{ (total)} \end{array}$

Stellar density: $\sim 0.3\,M_{\odot}\,\mathrm{pc}^{-3}$

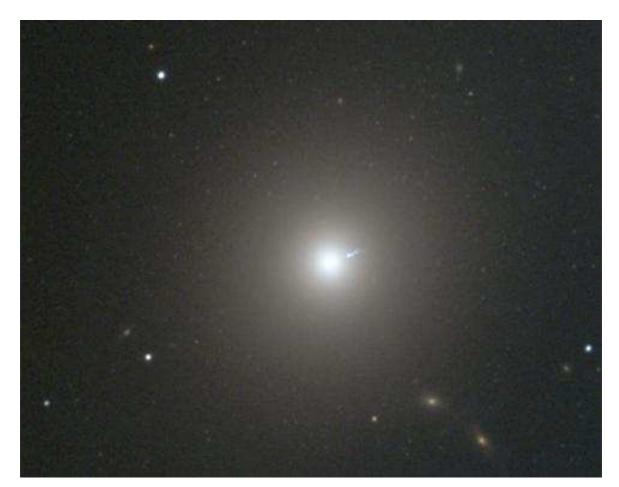
1
$$M_{\odot}=$$
 2 $imes$ 10 30 kg, 1 $L_{\odot}=$ 4 $imes$ 10 26 W

THE UNIVERSITY OF WARWICK

Milky Way, IV

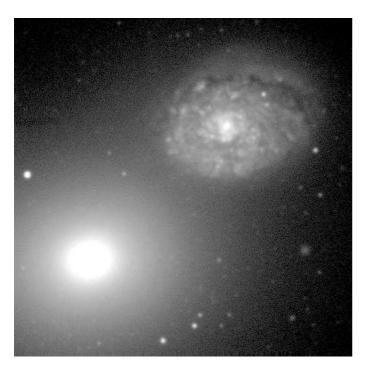

NGC 4565: W. McLaughlin

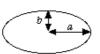
Introduction



1 $M_{\odot}=$ 2 imes 10 30 kg, 1 $L_{\odot}=$ 4 imes 10 26 W

4


SDSS


M87 (=Virgo A, note jet; E0), NOAO/AURA/NSF

Elliptical Galaxies

6–13

M60 (NGC 4649), E1, U. of Alabama



Elliptical galaxies: Classification as Ex where x=10(a-b)/a (integer part; between 0 and 7)

Ellipticals are low on dust and gas, reddish color (=old stars!), typically low luminosity and low mass (10 $^6\,M_\odot$)

Monsters: Also elliptical, from mergers in galaxy clusters (e.g., M87 in Virgo), M up to $10^{12}\,M_{\odot}$, designated cD.

M104 (Sa; "Sombrero galaxy), HST/NASA

Spiral Galaxies

M51 (NGC 5194 and 5195), Sc and Irr, Kitt Peak 0.9 m

Spiral Galaxies: Elliptical nucleus plus spiral arms, designated Sa, Sb, Sc depending on opening angle of spiral (Sa: $\sim 10^{\circ}$, Sc: $\sim 20^{\circ}$) and dominance of nucleus.

Bluer than ellipticals.

Mass content \sim 3 imes 10¹¹ M_{\odot} , with $M/L\sim$ 20,

Gas content increases from Sa to Sc from 1% to 8%.

Spiral arms probably due to density wave.

NGC 1365 (SBb, VLT/FORS/ANTU): note old "reddish" bar, young spiral arms

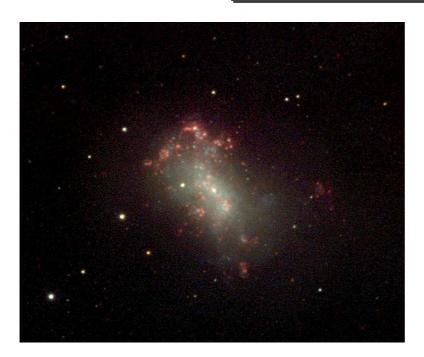
6-25

Barred Galaxies



M95 (NGC 3351), SBb, INT

Barred Galaxies: Classification as SBa, SBb, SBc similar to Sx galaxies, but additional presence of a bar (cause of bar production and stability are still debated).


Similar masses and gas content as in normal spirals.

Milky Way is a barred spiral.

Large Magellanic Cloud (LMC; Irr I), Loke Kun Tan

Irregular Galaxies: Irr I

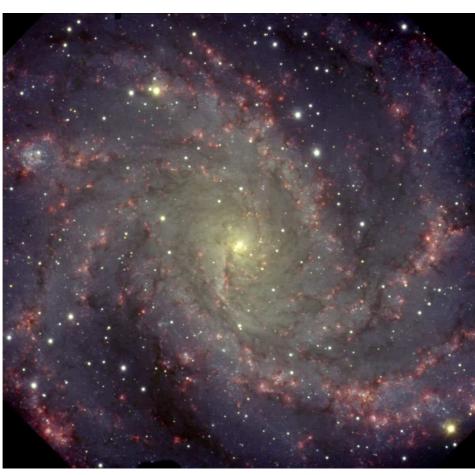
NGC 4449, Univ. Bonn

Irr I: no symmetry or spiral arms, bright knots of O- and B-type stars, very blue $(B-V\sim$ 0.5), high dust content (\sim 16%), $M/L\sim$ 3, masses vary appreciably from 10 6 to 10 10 M_{\odot} .

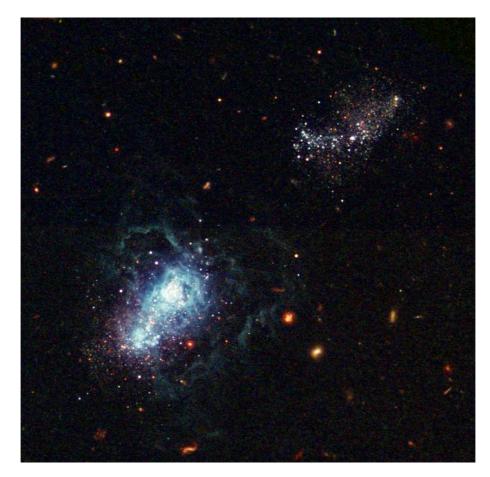
Examples: SMC, LMC ⇒ "Magellanic type irregulars".

6-28

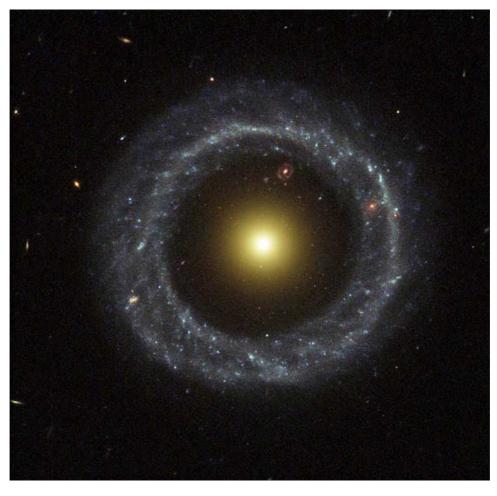
Irregular Galaxies: Irr II


Irr II: unsymmetrical and "abnormal"

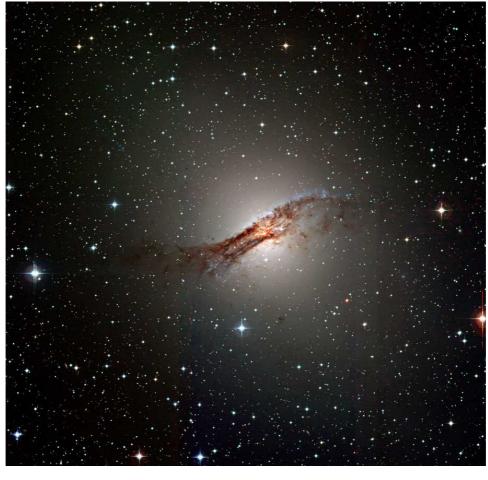
⇒ All objects that do not fit in the rest of the classification: starburst galaxies, interacting galaxies, Active Galactic Nuclei,...


M82, HST-WFPC

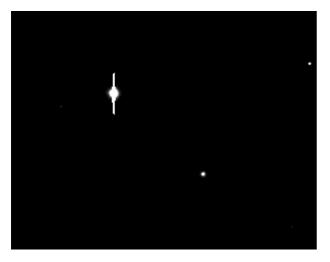
Irregular Galaxies: Irr II



NGC 6946, T. Rector/AURA/Gemini


I Zwicky 18, Y. Izotov/T. Thuan/HST

Hoag's Object, HST



NGC 1300, HST



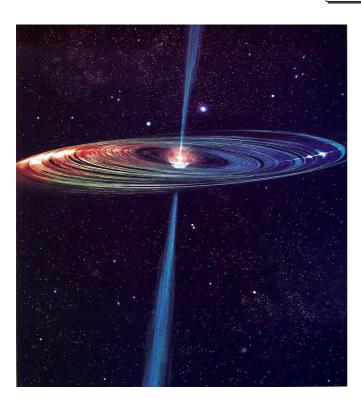
Cen A, ESO/WFI

AGN

logarithmic intensity scale

Active Galactic Nuclei (AGN): supermassive black holes ($M\sim 10^{6...8}\,M_\odot$), accreting 1 . . . 2 M_\odot /year

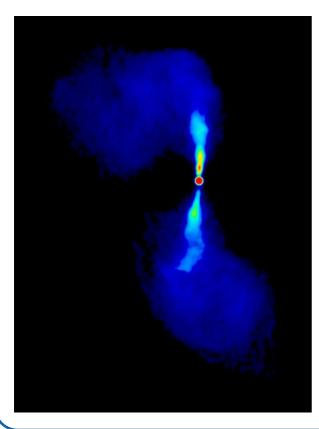
 \Longrightarrow Luminosity \sim 10 10 L_{\odot} (comparable to galaxy luminosity)


AGN

THE UNIVERSITY OF WARWICK

6-42

3


AGN

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- ullet supermassive black hole (10 $^7\,M_\odot$)
- ullet accretion disk ($\dot{M}\sim 1\dots 2\,M_{\odot}\,{
 m yr}^{-1}$)
- ullet large luminosity ($L\sim$ 10 $^{10}\,L_{\odot}$)
- Schwarzschild radius now ∼ 1 AU

AGN

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- supermassive black hole (10 $^7\,M_\odot$)
- accretion disk ($\dot{M} \sim 1...2 \, M_{\odot} \, \mathrm{yr}^{-1}$)
- ullet large luminosity ($L\sim 10^{10}\,L_\odot$)
- Schwarzschild radius now ∼ 1 AU
- often relativistic jets, where material is accelerated to the speed of light

AGN with jets: quasars, blazars... AGN without jets: Seyfert galaxies


AGN

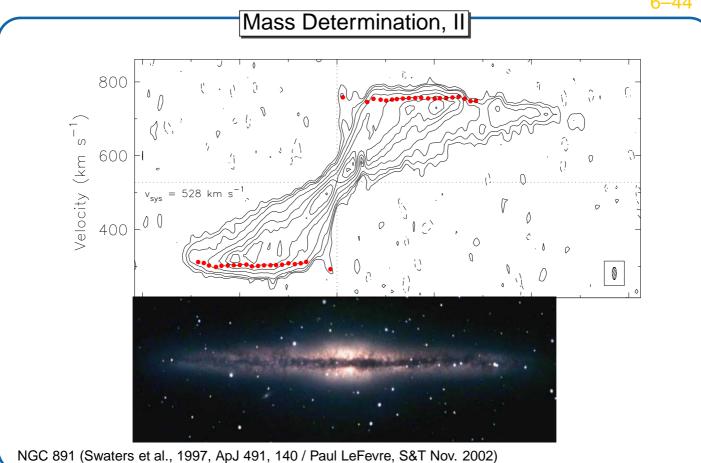
6–43

5

Mass Determination, I

NGC 6007 (Jansen; http://www.astro.rug.nl/~nfgs/)

Spectra of galaxies: sum of all constituent spectra (mainly stars plus some contribution from nebulae).

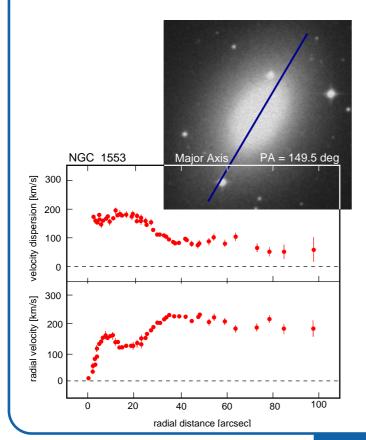

Absorption lines show clear shift

Doppler effect due to motion of stars around centre:

$$\frac{\Delta\lambda}{\lambda} = \frac{v_{\mathsf{r}}}{c} = \frac{v}{c}\sin i$$

where $v_{\rm r}$: radial velocity, i: inclination (angle measured with respect to plane of sky).

Typical rotation speeds are a few $100 \, \text{km} \, \text{s}^{-1}$.


Galaxies: Masses

6-45

2

Mass Determination, III

Spiral galaxy rotation curves are flat!

"Galaxy rotation problem", first discovered by Vera Rubin (1970)

© Astron. Soc. Pacific

← NGC 1553 (S0) (after Kormendy, 1984, ApJ 286, 116)

Rotation Curves: Interpretation

Newtonian interpretation of galaxy

rotation curves:

Motion because of mass within *r*:

$$\frac{GM(\leq r)}{r^{\mathbf{2}}} = \frac{v_{\mathrm{rot}}^{\mathbf{2}}(r)}{r}$$

such that

$$M(\leq r) = \frac{v_{\rm rot}^2 r}{G}$$

therefore:

 $v \sim \text{const. implies } M(\leq r) \propto r.$

This assumption is approximately true even for nonspherical mass distributions.

NGC 891, KPNO 1.3 m Barentine & Esquerdo

Galaxies: Masses

4

6–47

Rotation Curves: Interpretation

What mass distribution do we expect?

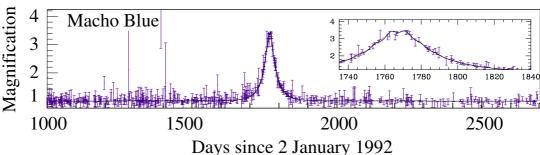
Intensity profile of disk in spiral galaxies can be well described by

$$I(r) = I_0 \exp(-r/h)$$

r: distance from centre, h: "scale height".

Luminosity emitted within radial distance r_0 :

$$L(r < r_0) = I_0 \int_0^{r_0} \exp(-r/h) \, 2\pi r \, dr = 2\pi I_0 \left(h^2 - \exp(-r_0/h) h(h + r_0) \right)$$


i.e., for $r_0 \longrightarrow \infty$: $L(r < r_0) \rightarrow \text{const.}$.

If all light comes from stars, i.e., light traces mass, then $M/L \sim {\rm const.}$, such that $M(< r) \sim {\rm const.}$ outside a certain radius and $v \propto r^{-1/2} \Longrightarrow {\rm not}$ what is observed!

Canonical interpretation: a large fraction of gravitating material does not emit light \Longrightarrow spiral galaxies have large and massive halos made of dark matter, resulting in $M/L \sim 30$.

Dark Matter: MACHOS

MACHO Event 96-LMC-2

after Alcock et al. (2001, Fig. 2)

MACHOS (Massive Compact Halo Objects): White dwarfs in the galaxy's halo

Pro:

- very low luminosity objects
 very difficult to detect
- detected by microlensing towards SMC and LMC (see figure) ⇒ MW halo consists of 50% white dwarfs

Contra:

- possible "self-lensing" (by stars in MW or SMC/LMC; confirmed for a few cases)
- 2. inferred white dwarf formation rate too high (100 year⁻¹ Mpc⁻³ instead of <1 as previously assumed)

Mass: Interpretation

6–49

Dark Matter: Nonbaryonic

Nonbaryonic dark matter:

Requirements:

- gravitating
- no or very weak other interaction with baryons (="us")
- ⇒ Grab-box of elementary particle physics:
- 1. Neutrinos with non-zero mass

Pro: It exists, mass limits are a few eV, need only $\langle m_{
u}c^2 \rangle \sim$ 10 eV

Contra: ν are relativistic ($v \sim c$), this has implications for galaxy formation that make it unlikely that they form a major part of dark matter.

2. Axions ($mc^2\sim 10^{-5...-2}\,{\rm eV}$) and WIMPs (weakly interacting massive particles; masses $mc^2\sim {\rm GeV}$)

Pro: help with cosmology as well

Contra: We do not know they exist... (but they might soon be detectable)

⇒ Jury is still out, question on origin of flat rotation curves is still open.

MOND

Modified Newtonian Dynamics (Milgrom, 1983ff.; MOND): Alternative to Dark Matter

Reviews: Sanders & McGaugh, 2002, Ann. Rev. Astron. Astrophys. 40, 263; Milgrom, 2001, astro-ph/0112069

Idea: Modify Newton's Laws:

Acceleration on particle in gravitational field:

$$a = \frac{GM}{r^2} \cdot \frac{1}{\mu(a/a_0)} \quad \text{with} \quad \mu(x) \longrightarrow \begin{cases} 1 & \text{for } x \to \infty \\ x & \text{for } x \to 0 \end{cases}$$

i.e., for accelerations $a \ll a_0$, $a \longrightarrow \sqrt{GMa_0/r^2}$, giving circular motion in the limit of small accelerations:

$$\sqrt{\frac{GM(\leq r)a_0}{r^2}} = \frac{v^2}{r} \quad \Longrightarrow \quad M(\leq r) = \frac{v^4}{Ga_0}$$

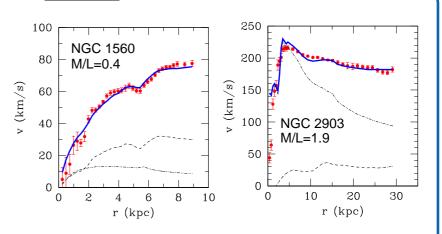
and therefore independent of r!

MOND can explain the flat rotational curves (by construction!).

Mass: Interpretation

6–51

3


MOND

Fits of rotational curves give

$$a_0 = 1.2 \times 10^{-8} \,\mathrm{cm}\,\mathrm{s}^{-2}$$

and $M/L \sim$ 1, so not bad! BUT:

 where is the physics behind a₀?

after Sanders & McGaugh (2002)

violation of the strong equivalence principle

("outcome of any physical experiment is independent of where and when in the universe it is performed, and it is independent on whether the experimental apparatus is free falling or stationary")

→ At the moment MOND does not seem to be a viable alternative to other theories of dark matter.

... but it shows that even today people are not afraid to attack Newton's laws, and this is good for progress of physics as a whole