Cosmology

8-2

Introduction

Cosmology: science of the universe as a whole

How did the universe evolve to what it is today?

Based on four basic facts:

- The universe expands,
 - is isotropic,
 - and is homogeneous.

Isotropy and homogeneity of the universe: "cosmological principle". Perhaps (for us) the most important fact is:

io mode important lade lo.

• The universe is habitable for humans.

("anthropic principle")

The one question cosmology does not attempt to answer is: How came the universe into being?

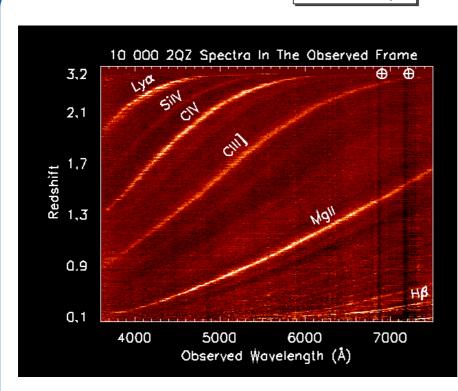
Realm of theology!

Edwin Hubble

Edwin Hubble (1889–1953):

- Realisation of galaxies as being outside of the Milky Way
- Discovery that universe is expanding

Founder of modern extragalactic astronomy


Christianson, 1995, p. 165

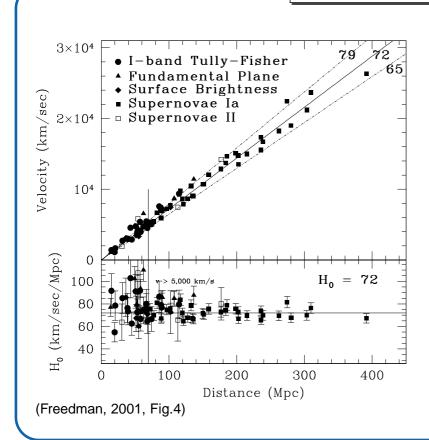
Expansion of the Universe

8–5

Redshifts, II

Redshift:

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}}$$


interpreted as velocity:

$$v = cz$$

where $c = 300000 \, \mathrm{km \, s^{-1}}$ (speed of light)

2dF QSO Redshift survey

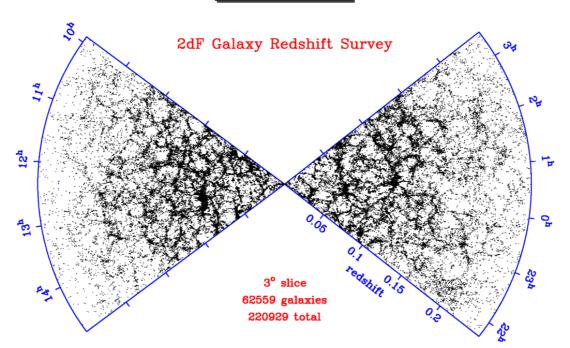
Hubble Relation

Hubble relation (1929):

The redshift of a galaxy is proportional to its distance: $v=cz=H_0d$

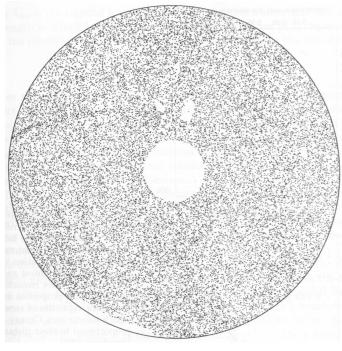
where H_0 : "Hubble constant". Measurement: determine v from redshift (easy), d with standard candles (difficult) $\Longrightarrow H_0$ from linear regression. Hubble Space Telescope finds

$$H_0 = 72 \pm 8 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$$


Discussions in previous years on value of H_0 are over. . .

Expansion of the Universe

8-7


Homogeneity

2dF Survey, ~220000 galaxies total

Homogeneity: "The universe looks the same, regardless from where it is observed" (on scales \gg 100 Mpc).

Isotropie

Peebles (1993): Distribution of 31000 radio sources on northern sky (wavelength $\lambda=6\,\mathrm{cm})$

Isotropy ← The universe looks the same in all directions.

N.B. Homogeneity *does not* imply isotropy, and isotropy around one point does not imply homogeneity!

Expansion of the Universe

8–9

6

World Models

A. Einstein (1879-1955)

Albert Einstein: Presence of mass leads to curvature of space (=gravitation) \Longrightarrow General Theory of Relativity (GRT)

GRT is applicable to Universe as a whole!

World Models

A. Einstein (1879–1955)

Theoretical cosmology:

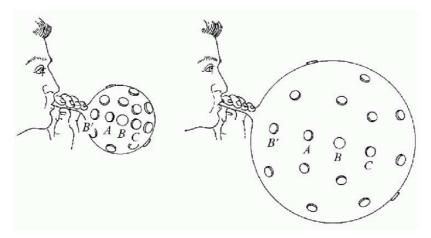
Combination of

- 1 relativity theory
- 2. thermodynamics
- 3. quantum mechanics

⇒ complicated

Typically calculation performed in three steps:

- Describe metric following the cosmological principle
- 2. Derive evolution equation from GRT
- 3. Use thermodynamics and quantum mechanics to obtain equation of state
- ... and then do some maths


Expansion of the Universe

12

8-10

World Models

 $R \operatorname{small}$ R large

Misner, Thorne, Wheeler

Friedmann: Mathematical description of the Universe using normal "fixed" coordinates ("comoving coordinates"), plus scale factor R which describes evolution of the Universe.

World Models

Using GR, derive equation for evolution of scale factor ("Friedmann equations").

World Model: Evolution of R as a function of time

Equations depend on

- 1. Value of H as measured today (note: H is time dependent!)
- 2. Density of universe, $\Omega = \Omega_{\rm m} + \Omega_{\Lambda}$

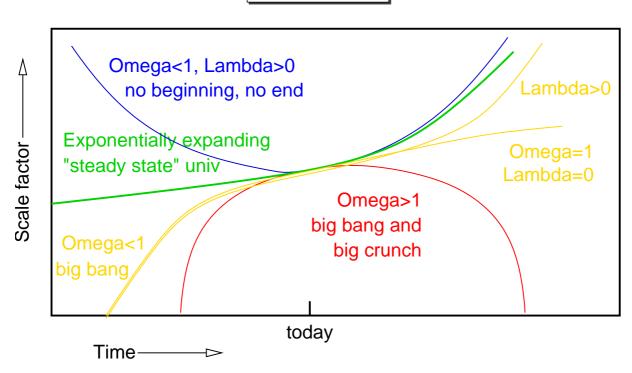
Density: universe evolves under its self gravitation, typically parameterised in units of critical density, ρ_{crit} (density when universe will collapse in the future):

$$\Omega = rac{
ho}{
ho_{
m crit}} \qquad {
m where} \qquad
ho_{
m crit} = rac{3H_0^2}{8\pi G}$$

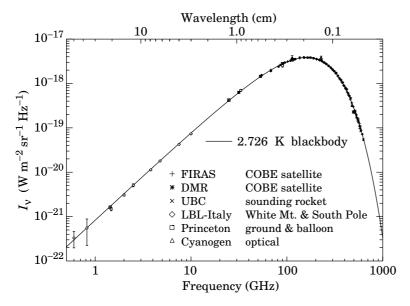
currently: $\rho_{\rm crit}\sim$ 1.67 \times $10^{-24}\,{\rm g\,cm^{-3}}$ (3. . . 10 H-Atoms ${\rm m^{-3}}$).

Total Ω is sum of:

- 1. $\Omega_{\rm m}$: Matter, i.e., everything that leads to gravitative effects, $\Omega_{\rm m}$ in baryonic matter is \lesssim 3% is baryonic, but note there might be "nonbaryonic dark matter" as well!
- 2. $\Omega_{\Lambda} = \Lambda c^2/3H^2$: contribution caused by vacuum energy density Λ ("dark energy")


Expansion of the Universe

8-12


15

World Models

Many different kinds of world models are possible, behaviour of universe depends on Ω und Λ .

3K CMB

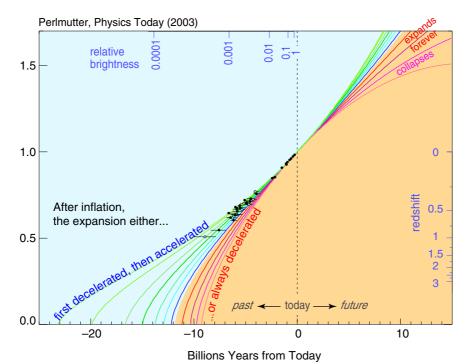
Penzias & Wilson (1965): "Measurement of Excess Antenna Temperature at 4080 Mc/s"

⇒ Cosmic Microwave
Background radiation (CMB)

CMB spectrum is blackbody with temperature $T_{\rm CMB} = 2.728 \pm 0.004 \, {\rm K}.$

(Smoot et al., 1997, Fig. 1)

Extrapolating CMB temperature back in time shows:


Universe started with a hot big bang, has since cooled down.

3K CMB

8–14

World Models

Note: Extrapolation backwards gives age of universe as *roughly* $1/H_0!$ for $H_0 = 72 \,\mathrm{km \, s^{-1} \, Mpc^{-1}} = 2.3 \times 10^{-18} \,\mathrm{s^{-1}}$, giving an age of 13.6 Gyr.

History of the universe

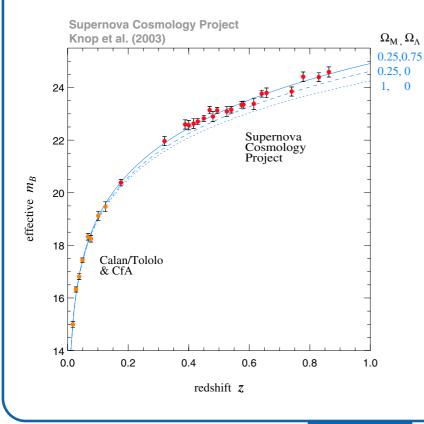
R(t)	$\begin{array}{c} t \\ \text{since BB} \end{array}$	$T[{\sf K}]$ [K]	$ ho_{ m matter}$ [g cm $^{-3}$]	Major Events
	10^{-42}	10 ³⁰		Planck era, "begin of physics"
	10 ⁻⁴⁰³⁰	10 ²⁵		Inflation (IMPLIES $\Omega=$ 1)
10 ⁻¹³	\sim 10 $^{-5}$ s	∼10 ¹³	~10 ⁹	generation of p-p ⁻ , and baryon anti-baryon pairs from radiation background
3×10^{-9}	1 min	10 ¹⁰	0.03	generation of e ⁻ -e ⁺ pairs out of radiation background
10^{-9}	10 min	3×10^9	10^{-3}	nucleosynthesis
$10^{-4} \dots 10^{-3}$	10 ⁶⁷ yr	1034	10 ⁻²¹¹⁸	End of radiation dominated epoch
7×10^{-4}	380000 yr	4000	10 ⁻²⁰	Hydrogen recombines, decoupling of matter and radiation
	$200\times10^6\text{yr}$			first stars formed
1	$13.7\times10^9\text{yr}$	3	10^{-30}	now

History of the universe

8–16

Conclusions

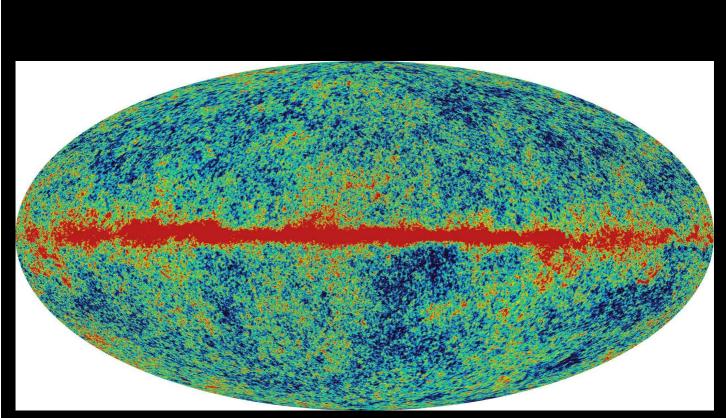
Modern Cosmology: Determination of H_0 , Ω and Λ from observations and comparison with theory


In the following: Examples for new measurements to determine Ω and Λ :

- Supernova observations and
- Cosmic Microwave Background (WMAP).

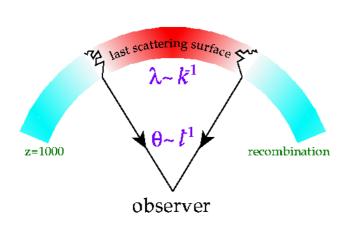
General hope: confirmation that $\Omega_{\rm m}+\Omega_{\Lambda}=$ 1 as predicted by theory of inflation (this implies a *flat* universe).

Supernovae



Supernova observations are well explained by models with $\Omega_{\rm m}=0.25$ and $\Omega_{\Lambda}=0.75$.

Supernovae



1

WMAP, W-Band, $\lambda=$ 3.2 mm, $\nu=$ 93.5 GHz, resolution 0.21 $^\circ$

Results

courtesy Wayne Hu

After Big Bang: universe dense ("foggy"), photons efficiently scatter off electrons ⇒ coupling of radiation and matter

Universe cools down: recombination of protons and electrons into hydrogen

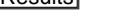
- ⇒ no free electrons
- ⇒ scattering far less efficient
- ⇒ Photons: "free streaming"

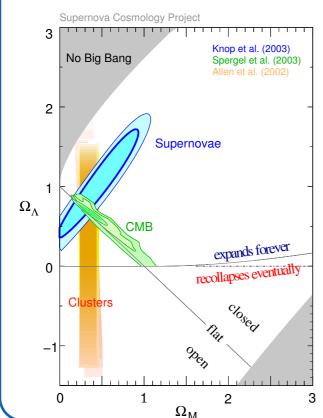
Photons escaping from overdense regions loose energy (gravitational red shift)

⇒ Observable as temperature fluctuation (Sachs Wolfe Effect)

CMB Fluctuations \sim Gravitational potential at $z\sim$ 1100 \Longrightarrow structures

CMB


CMB


THE UNIVERSITY OF WARWICK

8–28

9

Results

Confidence regions for Ω_{Λ} and $\Omega_{\rm m}$. dark: 68% confidence, outer region: 90%

$$\Omega = 1.02 \pm 0.02$$

$$\Omega_{\mathsf{m}} = \mathsf{0.14} \dots \mathsf{0.3}$$

$$H_0 = 72 \pm 5 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

leading to an age of the universe of 13.7 billion years.

This means:

 \sim 70% of the universe is due to "dark energy"

... and what this is: we have no clue