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PX144: Introduction to Astronomy

Academic Week 22/Term Week 18: Stars

Question 1: The Habitable Zone– This question will be marked for credit
Current ideas about the possibilityof life in extrasolar planetary systems assume that one of the major conditions
to be fulfilled is the existence of liquid water in these planetary systems. This idea has led to the concept of
“habitable zones” in solar systems. In this question we willuse this concept to investigate where life is possible
in our own solar system. As a caveat, please note that the concept of habitable zones is heavily debated within
the “astrobiology community”. For a dissenting opinion, see, e.g., “ What Does a Martian Look Like?: The
Science of Extraterrestrial Life” by Jack Cohen and Ian Steward. Note also that we will only be looking at
producing liquid water from keeping a planet hot enough withirradiated solar energy and that we ignore the
possibility of other sources of energy such as the tidal heating of Europa discussed in the lectures.
Note: In questions asking you for quantitative answers, in order to get full marks it is imperative that you not
only show how you obtain the value of your answer, but also itsunits. Just guessing the units will not be
sufficient, you will have to prove that your result has indeed the correct units.

a) Assume a spherical planet with planetary radiusr situated at a distanced from a star with luminosityL. The
total power available for heating the planetary surface is given by the toal power received by the sun-facing
side of the planet,Ptot, minus that immediately reflected away by clouds in the atmosphere. The planetary
reflectivity is usually characterised by the “albedo”,a, defined as the fraction of power received that is
reflected away. Therefore, the power received on the surfaceis Pabs= (1−a)Ptot. Assume that the planetary
atmosphere isolates the planet well enough that a temperature equilibrium sets in over the whole planetary
surface. This is reached once the total power received is equal to the power emitted by the planet (mainly as
infra-red radiation).

Derive a formula for the average planetary temperature by setting the power received by the irradiated
surface equal to that radiated away over the whole planetarysurface. The power emitted per square metre
by a planetary or stellar surface of temperatureT is given by Stefan-Boltzmann’s law for a blackbody,
modified by theemissivity ε, a measure for the efficiency of a radiating body:

Pem= εσSBT4

where the Stefan-Boltzmann constant is given byσSB = 5.7× 10−8 W m−2 K−4.

(Answer: T =
{

(

(1− a)L
)

/
(

16πd2εσSB
)

}1/4
).

b) Use the above equation to estimate the average temperature on the Earth (d = 1 AU = 150× 106 km),
assuming a surface averaged albedo ofa� = 0.3. Assume that the Earth radiates like a black body, i.e.,
ε = 1. Give the temperature in both, Kelvins and Centigrade. Thesolar luminosity isL = 4× 1026W.

c) The temperature you found in the previous question is too low – the average temperature on Earth’s surface
is about+17◦C. The reason is the Greenhouse effect: a large fraction of the infra red radiation emitted
by the Earth’s surface is absorbed in the atmosphere. This absorbed radiation heats up the atmosphere.
For symmetry reasons, however, only half of the thermal radiation emitted by the atmosphere is radiated
into space, the rest of the energy remains trapped and the overall temperature of the Earth increases. For
simplicity we can treat the greenhouse effect as if the Earth’s emissivity isε = 0.6, resulting in a predicted
surface temperature of approximately 19◦C.

On Earth, life is observed in regions with annual average temperatures between−10◦C and+30◦C. We can
use this temperature range to define the “habitable zone” of our solar system. To make our estimate more
reliable, note that it took about 4.6 billion years for intelligent life to evolve on Earth. During this time,
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the solar luminosity increased by approximately 30%. Usingthis information, compute the inner and outer
radii of the habitable zone around the Sun. What is the maximum eccentricity a planet can have to always
remain within the habitable zone throughout the evolution of life on Earth? Assume that the greenhouse
effect was similar throughout this period (note that this isnot correct for the real solar system as the Earth’s
atmospheric composition is the result of the existence of life on Earth).

Question 2: The Doppler Effect
This question is based on problem 8–3 from Zeilik & Gregory, reading through section 8-1 of the book will
greatly help you with answering this question.
At what wavelength will the following spectral lines be observed?

a) A line emitted at 500 nm by a star moving towards us at 100 km s−1.

b) A line emitted by Calcium atλ = 397 nm by a galaxy receding at 60 000 kms−1.

c) A cloud of neutral hydrogen emitting a radio line with a frequency ofν = 1420.4 MHz while moving away
at 200 kms−1 (becauseλ ∼ 21 cm this line is often called the “21 cm line” of hydrogen andis of great
importance of observational radio astronomy) . What is thefrequency at which the line is observed?

d) By how much can the Hydrogen Hα line (λ = 656.3 nm) of an astronomical object maximally vary due to
the motion of the Earth around the Sun?

Question 3: Properties of Stars
A good rule of thumb is that a star remains on the main sequenceuntil ∼15% of the available hydrogen has
been converted to helium. Population stars with a composition similar to that of the Sun consist of73%
hydrogen, 25% helium, and 2% heavier elements (by mass). Theenergy released during the nuclear fusion of
four hydrogen atoms to helium isε = 4 × 10−12J. The current luminosity of the Sun isL� = 4 × 1026W, its
mass isM� = 2× 1030kg, and the mass of a hydrogen atom ismH = 1.67× 10−27 kg.

a) Compute the rate of 4H−→ He required to sustain the current luminosity of the Sun. Howlong does it take
to convert 15% of the solar hydrogen to helium? Since the subsequent phases of stellar evolution are much
faster, this is a good estimate for the total lifetime of a star (Answer: 10 billion years).

b) The solution of the question above should have convinced you that the life time,t?, of a star is proportional to
the ratio between the energy available to be spent, and the rate at which this energy is spent, i.e., proportional
to M?/L?. For the main sequence, there exists an empirical relationship between the mass of a star,M?,
and its luminosity,L?, which has the following form:

L?
L�
=

(

M?
M�

)3.3

Using your result from above, compute the lifetime of a very massive star withM? = 25M�, and for a
dwarf star with a mass ofM? = 0.1 M�.

Question 4: Comments on this week’s lectures
In order to improve the teaching and to enable myself to reactto problems you might have with the module, I
would like to hear your opinion on my teaching as early as possible. I would appreciate it if you would voice
any problems and criticisms as soon as possible, e.g., on thespeed with which I talk about the subjects of the
lectures, the overall difficulty level of the class and the homework, the quality and contents of the handouts, and
so on.
Please write these comments on a separate sheet of paper and give them to me: Either put the paper on the
lectern before class or put it in my “pigeon hole” in the mailboxes on the 5th floor of the physics building, close
to the physics undergraduate office. Feel free to remain anonymous, if you deem this necessary. You can also
ask questions or post comments by using the discussion boardfor this module athttp://forums.warwick.
ac.uk/wf/browse/forum.jsp?fid=912 or by sending email toj.wilms@warwick.ac.uk (I will post an-
swers to emailed questions on the discussion board, if they are of sufficient interest for others).
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