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Structure on the Main Sequence: Simulations show existence of two regimes:

lower main sequence : stars have structure similar to Sun:

− energy generation: pp-chain (ǫ ∝ T 5)

− inner radiative core

− convective hull

upper main sequence : for central temperatures of 18 × 106 K (1.5M⊙ stars):

pp-chain and CNO-cycle produce equal amounts of energy. Above that: CNO

dominates.

− energy generation: CNO-cycle (ǫ ∝ T 17)

− inner convective core since energy generation from CNO cycle strongly

peaked towards center.

− outer radiative hull
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Evolution on MS similar, however, faster than for low mass stars.

More massive stars (& 1.5 M⊙) reach threshold temperature for 3α before

reaching degeneracy

=⇒ He just starts to burn.

In these objects, higher order fusion processes can kick in (but are energetically

unimportant): alpha reactions

12C +
4He →

16O + γ
16O +

4He →
20Ne + γ

20Ne +
4He →

24Mg + γ

Outer layers continue H shell burning.

During evolution of star on red giant branch: convective hull moves deeper into

core, can mix fusion products into outer layers.

Evolution of the structure of a 3 M⊙ star to the early Asymptotic Giant Branch (Maeder & Meynet, 1989).

Internal structure of a 3 M⊙ star

which has reached the early

Asymptotic Giant Branch.

Maeder & Meynet, 1989



Kippenhahn et al. (1965): Evolution of the internal structure of a 5M⊙ star.

Kippenhahn et al. (1965)

Evolution of a 5 M⊙ star in the HRD.

Evolution of the structure of a 7 M⊙ star to the carbon burning phase (Maeder & Meynet, 1989).

Internal structure of a 7 M⊙ star

which just starts its carbon burning

phase.

Maeder & Meynet, 1989
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after Iben, 1991

Evolution of stars in the HRD

from main sequence to death

Typical timescales (units of 106 yr;

Schaller et al. 1992):

1 M⊙ 5 M⊙ 25 M⊙

H→He 10000 94 6.4

He→C 12 0.6

C+C 0.01

PN . 0.01 . 0.01 N/A

WD ∞ ∞ N/A

Post-H-burning burning: need higher
core temperatures (Coulomb barrier!),
less energy release =⇒ last much
shorter than hydrogen burning.
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after Bertelli et al. (1994)

Predicted evolution of HRD from

globular clusters can reproduce

their HRDs, allows age

determination
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(M68; Straniero et al., 1997; Fig. 11)

Predicted evolution of HRD from

globular clusters can reproduce

their HRDs, allows age

determination

Result: ∼12. . . 13 billion years

=⇒GCs are oldest objects in

the universe!


