

1

White Dwarfs

White Dwarfs:

- 1. End stages of evolution of stars with $M \lesssim 10 \, M_{\odot}$ on main sequence
- 2. typically $M \sim 0.6 \dots 0.8 M_{\odot}$, and always $M < 1.44 M_{\odot}$ (Chandrasekhar mass); above that: relativistic degenerate gas ($P \propto \rho^{4/3}$), can show that under these circumstances WD is not stable.
- 3. mainly consist of C and O
- 4. Radius \sim Earth
- 5. Typical density $\rho \sim 10^6 \,\mathrm{g \, cm^{-3}}$
- 6. interior temperature $\sim 10^7$ K, atmosphere $\sim 10^4$ K, slowly cooling down (observable for $\gtrsim 10^9$ years).

White Dwarfs He White dwarfs come in two 10 km flavors: DA: H present in spectrum 200km C/O (\sim 80% of all WD) **DB:** He present in spectrum (\sim 8500 km the rest) plus a few oddballs

Structure: gravitationally settled, so DB's really do not have any H since it would "swim on top"

End-Stages of Stellar Evolution

 \implies layered, "onion-like" structure

Sirius A+B: Chandra

4-1

McDonald Observatory (optical; WD is faint)

White Dwarfs

White Dwarfs

2

4 - 3

Type II SN2001cm in NGC5965 (2.56 m NOT, Håkon Dahle; NORDITA)

Evolution of more massive stars: fusion up to ⁵⁶Fe, then no energy gain \implies no pressure balance in centre \implies supernova explosion of type II. energy release: 10^{46} W ($10^{20}L_{\odot}$; about 1% in light, rest in neutrinos)

(?, Fig. 1); t: time after maximum light; τ : time after explosion; P Cyg profiles give $v\sim 10000\,{
m km\,s^{-1}}$

300

350

400

Rough classification

Note: pre 1985 subtypes la, Ib had different definition than today \implies beware when reading older texts.

Light curves of SNe I

all very similar,

more scatter.

SNe II have much

SNe II-L ("linear")

resemble SNe I

SNe II-P ("plateau")

brightness to

within 1 mag for

extended period of

have const.

time.

4 - 8

5

4–10

7

Supernova Statistics, I

Clue on origin from supernova statistics:

- SNe II, lb, lc: never seen in elliptical galaxies, which are void of gas and have no new star formation; generally associated with spiral arms and H II regions in spiral galaxies, i.e., with star forming regions
- \implies progenitor of SNe II, lb, lc: massive stars (\gtrsim 8 M_{\odot}) \implies "core collapse supernova"
- SNe Ia: all types of galaxies, no preference for arms.
- ⇒ progenitor of SNe Ia: accreting carbon-oxygen white dwarfs, undergoing thermonuclear runaway (see later)

4-13

Core Collapse SNe

Nuclear reactions in massive (> 8 M_{\odot}) stars:

Reaction	above $T [10^6 \mathrm{K}]$	Energy gain [MeV]
Hydrogen burning		
$4^{1}H \longrightarrow {}^{4}He$	4	6.55
Helium burning		
$3^{4}\text{He} \longrightarrow {}^{8}\text{Be} + {}^{4}\text{He} \longrightarrow {}^{12}\text{C}$	100	<0.61
Carbon burning		
$^{12}\text{C} + {}^{4}\text{He} \longrightarrow {}^{16}\text{O}$	600	<0.54
$2^{12}C \longrightarrow {}^{4}He + {}^{20}Ne$		
20 Ne $+^{4}$ He \longrightarrow n $+$ 23 Mg		
Oxygen burning		
$2^{16}O \longrightarrow {}^{4}He + {}^{28}Si$	1000	<0.3
$2^{16}O \longrightarrow 2^{4}He + {}^{24}Mg$		
Silicon burning		
$2^{28}Si \longrightarrow {}^{56}Fe$	3000	< 0.18

Supernovae

Supernovae

13

Supernovae

Core Collapse SNe

Iron core starts to shrink \Longrightarrow T increases \Longrightarrow ⁵⁶Fe starts photodisintegration:

$$\label{eq:Fe} \begin{array}{l} {}^{56}\mathrm{Fe} + \gamma \longrightarrow \mathrm{13}^{4}\mathrm{He} + \mathrm{4n} \\ {}^{4}\mathrm{He} + \gamma \longrightarrow \mathrm{2p} + \mathrm{2n} \end{array}$$

Typical core masses are between 1.3 M_{\odot} (for 10 M_{\odot} on ZAMS) and 2.5 M_{\odot} (for 50 M_{\odot} on ZAMS).

Until now, free electrons have degeneracy pressure and hold star BUT: once core temperature increases to $T_{\rm c} \sim 8 \times 10^9$ K and density to $\rho_{\rm c} \sim 10^{10} \, {\rm g \, cm^{-3}}$: neutronization:

$$p + e^- \rightarrow n + \nu_e$$

 \implies rapid energy loss (for a 20 M_{\odot} star: 4.4 \times 10³⁸ erg s⁻¹ in photons, but 3 \times 10⁴⁵ erg s⁻¹ in neutrinos!) \implies **COLLAPSE**

"delayed explosion mechanism")

energy loss ${\sim}1.7 \times 10^{51}\,{\rm ergs\,s^{-1}}$ per 0.1 M_{\odot} of Fe

Supernovae

17

Once pressure support is gone:

 \implies collapse (free fall)

4 - 18

- \implies speeds are fast (outer core: \sim 70000 km s⁻¹!)
- \implies supersonic, so outer parts don't realize what's happening
- \implies inner core compresses further through neutronization
- \Longrightarrow once $\rho_{\rm c} \sim 8 \times 10^{14}\,{\rm g\,cm^{-3}}$: Neutron star forms (degeneracy pressure of neutrons)
- \Longrightarrow "solid surface forms", resulting in bounce back
 - ${\sim}20\,\text{msec}$ for shock wave to pass through core
- \implies further photodesintegration
- \implies shock moves outwards \implies explosion ("prompt hydrodynamic explosion")

Supernovae

(ESO VLT/FORS 2)

Crab nebula: young remnant of SN of 1054, observed light due to synchrotron radiation (radiation emitted by electrons accelerated in magnetic field)

16

5000–10000 year old IC 1340/Veil Nebula/Cygnus Loop (©Loke Kun Tan) Older supernova remnants: "wispy structure" due to interaction with interstellar medium, radiation (line emission) mainly caused by heating due to shocks.

Supernovae

The progenitor of a Type Ia supernovaImage: transpondent of the progenitor of a Type Ia supernovaImage: transpondent of transp

...causing the companion star to be ejected away.