The Galactic Center

D.Seal/JPL

The Hipparcos Catalogue (118000 stars)

D.Seal/JPL

The Yale Bright Star Catalogue (9110 brightest stars)

D.Seal/JPL

The second Tycho Catalogue (2.5 million stars)

Galileo Galilei (1564-1642; Sidereus Nuncius): Telescopes resolves (part of) the milky way in stars, discovers new stars \Longrightarrow Milky way is not "milky"!

The Milky Way

The Night Sky, VII

10. IHERSCHELI

William Herschel (1738-1822): First attempts to determine morphology of the Galaxy.
Note: heliocentric

The Night Sky, VIII

Wilhelm Bessel (1784-1846): First determination of a stellar parallax

$$
\begin{aligned}
& \text { reminder: } \\
& 1 \text { parsec }=3.26 \mathrm{Lj}=3 \times 10^{13} \mathrm{~km}
\end{aligned}
$$

Milky way in Sagittarius $27^{\circ} \times 40^{\circ}$
W. Keel (U Alabama)

Milky way in Sagittarius
$27^{\circ} \times 40^{\circ}$

Richter et al., 1999, A\&A 350, 476
M22, KPNO (N.A.Sharp, REU program/NOAO/AURA/NSF)

Milky way in Saggitarius
$27^{\circ} \times 40^{\circ}$
Distance: 8 kpc
$\Longrightarrow 1^{\circ} \sim 140 \mathrm{pc}$
$\Longrightarrow 1^{\prime} \sim 2 \mathrm{pc}$
$\Longrightarrow 1^{\prime \prime} \sim 0.3 \mathrm{pc}$

The Milky Way

The Milky Way

2MASS: inner $60^{\circ} \times 45^{\circ}$
Problem: strong extinction due to dust
($A_{\mathrm{V}} \sim 30$ mag: 10^{12} times reduction in the optical!)
\Longrightarrow Multiwavelength astronomy!

Infra red: Dust becomes transparent!
2MASS: 3 IR Bänder: $J(1.25 \mu \mathrm{~m}), \mathrm{H}(1.65 \mu \mathrm{~m}), \mathrm{K}_{s}(2.17 \mu \mathrm{~m})$

2MASS/MSX: Inner $4^{\circ} \times 2^{\circ}$
2MASS (J [1.25 $\mu \mathrm{m}]$, red), (K [2.17 $\mu \mathrm{m}]$, green), MSX (A [6-11 $\mu \mathrm{m}]$, blue)

Sgr A (3.6 cm , courtesy K.Y. Lo/NRAO/AUI)

Sgr A West ("spiral"):
2 pc diameter
$\sim 60 M_{\odot}$ ionized gas, shaped by tidal forces
(probably influence of mG B-field), northern arm falls on center, east and south arms rotate. around Sgr A West: circumnuclear disk of molecular gas, ($r \sim 2 \mathrm{pc}$). total mass accretion rate onto Sgr A*:
$\sim 0.03 M_{\odot} \mathrm{yr}^{-1}$

$70 \mathrm{pc} \times 70 \mathrm{pc}$, VLA (F. Yusef-Zadeh et al., 1982-1984) © $\mathrm{CRAO} / A U I$

Sgr A West ("spiral"):
2 pc diameter,
$\sim 60 M_{\odot}$ ionized gas, shaped by tidal forces
(probably influence of mG B-field) northern arm falls on center, east and south arms rotate. around Sgr A West: circumnuclear disk of molecular gas, ($r \sim 2 \mathrm{pc}$), total mass accretion rate onto Sgr A*
$\sim 0.03 M_{\odot} \mathrm{yr}^{-1}$

Sgr A (3.6 cm , courtesy K.Y. Lo/NRAO/AUI) and south arms rotate.
around Sgr A West: circumnuclear
disk of molecular gas, ($r \sim 2 \mathrm{pc}$). total mass accretion rate onto Sgr A*: $\sim 0.03 M_{\odot} \mathrm{yr}^{-1}$

Gemini North/AURA

Observations are difficult because
of astronomical seeing
($\sim 0.7^{\prime \prime}=0.2 \mathrm{pc}$)

The Galactic Center

Observations are difficult because of astronomical seeing
($\sim 0.7^{\prime \prime}=0.2 \mathrm{pc}$)
. which can be corrected by

adaptive optics

\Longrightarrow resolution: diffraction limit!
$\theta=1.22 \mathrm{rad} \cdot \lambda / d \sim 1 \mathrm{mas}$
(for $d=8 \mathrm{~m}, \lambda=2.2 \mu \mathrm{~m}$)
$\Longrightarrow 140 \mathrm{AU}$ for gal. center!
Gemini North/AURA

Genzel/Eckart
The Galactic Center

Genzel/Eckart

Genzel et al. (MPE)/Ghez et al. (UCLA): dynamical mass determination by measuring the proper motion of ~ 40 stars of the central cluster (Fig.: MPE results 1991-2000).

Velocity dispersion in the center
For $r \geq 0.057 \mathrm{pc}$: Keplerian velocity profile ($\sigma_{v} \propto v^{-1 / 2}$), influenced by cluster at smaller distances

The inner parsec: mass determination

distance from SgrA* (pc)

Model: point source plus cluster with a velocity dispersion of $50 \mathrm{~km} \mathrm{~s}^{-1} \Longrightarrow$ central mass: $2.4 \times 10^{6} M_{\odot}$

Eckart \& Genzel, 1997, MNRAS, 284, 576
Evidence for a very massive compact object in the Galactic center \Longrightarrow Black Hole?

The Galactic Center

radius from SgrA* ${ }^{(\mathrm{pc})}$

Ghez et al. (2003)
Schödel et al. (2002)
The center of the Galaxy harbors a black hole with
$M_{\mathrm{BH}}=(3.7 \pm 1.0) \times 10^{6} M_{\odot}$

The Galactic Center

