

Introduction

Virgo cluster, Burnell Schmidt telescope, NOAO/AURA/NSF Deep looks in the universe: galaxies as building blocks

M87 (=Virgo A, note jet; E0), NOAO/AURA/NSF

Edwin Hubble's Classification Scheme

M90 (Sb), NOAO/AURA/NSF

NGC 4565 (Sb, seen edge on), McLaughlin

Spiral Galaxies: Elliptical nucleus plus spiral arms, designated $\mathrm{Sa}, \mathrm{Sb}, \mathrm{Sc}$ depending on opening angle of spiral ($\mathrm{Sa}: \sim 10^{\circ}$, Sc : $\sim 20^{\circ}$) and dominance of nucleus.

Bluer than ellipticals.
Mass content $\sim 3 \times 10^{11} M_{\odot}$, with
$M / L \sim 20$,
Gas content increases from Sa to Sc from 1% to 8%.

Spiral arms probably due to density wave.

M51 (Sc; centre), HST/NASA

M83 (SABc, ESO)

NGC 1365 (SBb, VLT/FORS/ANTU): note old "reddish" bar, young spiral arms

Large Magellanic Cloud (LMC; Irr I), Loke Kun Tan

M95 (NGC 3351), SBb, INT
Barred Galaxies: Classification as $\mathrm{SBa}, \mathrm{SBb}, \mathrm{SBc}$ similar to $\mathrm{S} x$ galaxies, but additional presence of a bar (cause of bar production and stability are still debated).

Similar masses and gas content as in normal spirals.

Large Magellanic Cloud (LMC; Irr I), AURA/NOAO/NSF

NGC 4449, Univ. Bonn

Irr I: no symmetry or spiral arms, bright knots of O - and B-type stars, very blue ($B-V \sim 0.5$), high dust content ($\sim 16 \%$),
$M / L \sim 3$, masses vary appreciably from 10^{6} to $10^{10} M_{C}$

Examples: SMC, LMC \Longrightarrow "Magellanic type irregulars".

NGC 6946, T. Rector/AURA/Gemini

I Zwicky 18, Y. Izotov/T. Thuan/HST

Hoag's Object, HST

Cen A, ESO/WFI

NGC 1300, HST

NGC 3783: linear intensity scale
Active Galactic Nuclei (AGN): supermassive black holes ($M \sim 10^{6 \ldots 8} M_{\odot}$), accreting $1 \ldots 2 M_{\odot} /$ year
\Longrightarrow Luminosity $\sim 10^{10} L_{\odot}$ (comparable to galaxy luminosity)

AGN

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- supermassive black hole $\left(10^{7} M_{\odot}\right)$
- accretion disk ($\dot{M} \sim 1 \ldots 2 M_{\odot} \mathrm{yr}^{-1}$)
- large luminosity ($L \sim 10^{10} L_{\odot}$)
- Schwarzschild radius now ~ 1 AU

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- supermassive black hole ($10^{7} M_{\odot}$)
- accretion disk ($\dot{M} \sim 1 \ldots 2 M_{\odot} \mathrm{yr}^{-1}$)
- large luminosity ($L \sim 10^{10} L_{\odot}$)
- Schwarzschild radius now ~ 1 AU
- often relativistic jets, where material is accelerated to the speed of light

AGN with jets: quasars, blazars... AGN without jets: Seyfert galaxies

