The Deep Sky

Optical image of the whole sky

2MASS Covers the Sky

2MASS
 The Two Micron All Sky Survey
 Infrared Processing and Analysis Center/Caltech \& Univ. of Massachusetts

Infrared view of the whole sky

Luminosity: $\sim 2 \times 10^{10} L_{\odot}$ Mass: $\sim 10^{11} M_{\odot}$ (radiating)
$\sim 10^{12} M_{\odot}$ (total)
Stellar density:
$\sim 0.3 M_{\odot} \mathrm{pc}^{-3}$
$1 M_{\odot}=2 \times 10^{30} \mathrm{~kg}$,
$1 L_{\odot}=4 \times 10^{26} \mathrm{~W}$
M83: ESO [VLT ANTU+FORS1]
Introduction

Luminosity: $\sim 2 \times 10^{10} L_{\odot}$ Mass: $\sim 10^{11} M_{\odot}$ (radiating)
$\sim 10^{12} M_{\odot}($ total $)$
Stellar density:
$\sim 0.3 M_{\odot} \mathrm{pc}^{-3}$
$1 M_{\odot}=2 \times 10^{30} \mathrm{~kg}$,
$1 L_{\odot}=4 \times 10^{26} \mathrm{~W}$

Andromeda galaxy (closest real neighbour galaxy, diam. 20kpc, distance: 675 kpc), NOAO/AURA/NSF

Virgo cluster, Burnell Schmidt telescope, NOAO/AURA/NSF Deep looks in the universe: galaxies as building blocks

Deep image of Virgo cluster, 4 m Mayall telescope, NOAO/AURA/NSF

Edwin Hubble's Classification Scheme

Sc
Ellipticals
E0 E3 E5 E7 S0

SDSS
Galaxy classification via the Hubble "tuning fork diagram"

M87 (=Virgo A, note jet; E0), NOAO/AURA/NSF

M49 (E4), NOAO/AURA/NSF

M59 (E5; color image), NOAO/AURA/NSF

M86 (lenticular, S0), NOAO/AURA/NSF

Elliptical galaxies: Classification as E x where $x=10(a-b) / a$ (integer part; between 0 and 7)

Ellipticals are low on dust and gas, reddish color (=old stars!), typically low luminosity and low mass $\left(10^{6} M_{\odot}\right)$

Monsters: Also elliptical, from mergers in galaxy clusters (e.g., M87 in Virgo), M up to $10^{12} M_{\odot}$, designated cD.

M104 (Sa; "Sombrero galaxy), HST/NASA

Edge on Spiral NGC 4013 (Sa; NASA/HST)

M90 (Sb), NOAO/AURA/NSF

NGC 4565 (Sb, seen edge on), McLaughlin

6

M51 (Sc; centre), HST/NASA

NGC 300 (Sc), M. Schirmer/ESO/2.2 m

Spiral Galaxies: Elliptical nucleus plus spiral arms, designated $\mathrm{Sa}, \mathrm{Sb}, \mathrm{Sc}$ depending on opening angle of spiral (Sa: $\sim 10^{\circ}$, Sc:
$\sim 20^{\circ}$) and dominance of nucleus.
Bluer than ellipticals.
Mass content $\sim 3 \times 10^{11} M_{\odot}$, with
$M / L \sim 20$,
Gas content increases from Sa to Sc from 1% to 8%.

Spiral arms probably due to density wave.
M51 (NGC 5194 and 5195), Sc and Irr, Kitt Peak 0.9 m

M83 (SABc, ESO)

M58 (SBb), NOAO/AURA/NSF

NGC 1365 (SBb, VLT/FORS/ANTU): note old "reddish" bar, young spiral arms

Barred Galaxies

M95 (NGC 3351), SBb, INT
Barred Galaxies: Classification as SBa, SBb, SBc similar to $\mathrm{S} x$ galaxies, but additional presence of a bar (cause of bar production and stability are still debated).

Similar masses and gas content as in normal spirals.

Large Magellanic Cloud (LMC; Irr I), Loke Kun Tan

Large Magellanic Cloud (LMC; Irr I), AURA/NOAO/NSF

NGC 4449, Univ. Bonn

Irr I: no symmetry or spiral arms, bright knots of O - and
B-type stars, very blue ($B-V \sim 0.5$), high dust content ($\sim 16 \%$),
$M / L \sim 3$, masses vary appreciably from 10^{6} to $10^{10} M_{\odot}$.

Examples: SMC, LMC
\Longrightarrow "Magellanic type irregulars".

Irregular Galaxies: Irr II

NGC 6946, T. Rector/AURA/Gemini

NGC 6946, T. Rector/AURA/Gemini
NGC 6946 is a SABc galaxy (note very small bar).

I Zwicky 18, Y. Izotov/T. Thuan/HST

I Zwicky 18, Y. Izotov/T. Thuan/HST

I Zw 18 is a irregular galaxy

(and one of the smallest galaxies known, merely 1.2 kpc across).

Hoag's Object, HST

Hoag's Object, HST
Hoag's object an irregular galaxy

NGC 1300, HST

NGC 1300, HST
NGC 1300 is a SBbc galaxy

Cen A is a (peculiar) S0 galaxy

NGC 3783: linear intensity scale

NGC 3783: linear intensity scale

logarithmic intensity scale

NGC 3783: linear intensity scale

logarithmic intensity scale

Active Galactic Nuclei (AGN): supermassive black holes ($M \sim 10^{6 \ldots 8} M_{\odot}$), accreting $1 \ldots 2 M_{\odot} /$ year
\Longrightarrow Luminosity $\sim 10^{10} L_{\odot}$ (comparable to galaxy luminosity)

AGN

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- supermassive black hole ($10^{7} M_{\odot}$)
- accretion disk ($\dot{M} \sim 1 \ldots 2 M_{\odot} \mathrm{yr}^{-1}$)
- large luminosity ($L \sim 10^{10} L_{\odot}$)
- Schwarzschild radius now ~ 1 AU

Structure of active galactic nuclei similar to galactic black holes (although somewhat scaled up...)

- supermassive black hole ($10^{7} M_{\odot}$)
- accretion disk ($M \sim 1 \ldots 2 M_{\odot} \mathrm{yr}^{-1}$)
- large luminosity ($L \sim 10^{10} L_{\odot}$)
- Schwarzschild radius now ~ 1 AU
- often relativistic jets, where material is accelerated to the speed of light

AGN with jets: quasars, blazars.. . AGN without jets: Seyfert galaxies

Mass Determination, I

NGC 6007 (Jansen;
http://www.astro.rug.nl/~nfgs/)

Spectra of galaxies: sum of all constituent spectra (mainly stars plus some contribution from nebulae).

Absorption lines show clear shift \Longrightarrow Doppler effect due to motion of stars around centre:

$$
\frac{\Delta \lambda}{\lambda}=\frac{v_{r}}{c}=\frac{v}{c} \sin i
$$

where v_{r} : radial velocity, i : inclination (angle measured with respect to plane of sky).
Typical rotation speeds are a few $100 \mathrm{~km} \mathrm{~s}^{-1}$.

Mass Determination, II

NGC 891 (Swaters et al., 1997, ApJ 491, 140 / Paul LeFevre, S\&T Nov. 2002)
Galaxies: Masses

Mass Determination, III

Spiral galaxy rotation curves are flat!
"Galaxy rotation problem", fi rst discovered by Vera Rubin (1970)

(C)Astron. Soc. Pacifi c
\leftarrow NGC 1553 (SO) (after Kormendy, 1984, ApJ $286,116)$

Rotation Curves: Interpretation

Rotation Curves: Interpretation

What mass distribution do we expect?

Intensity profi le of disk in spiral galaxies can be well described by

$$
I(r)=I_{0} \exp (-r / h)
$$

where r : distance from centre, h : "scale height".
Luminosity emitted within radial distance r_{0} :

$$
L\left(r<r_{0}\right)=I_{0} \int_{0}^{r_{0}} \exp (-r / h) 2 \pi r \mathrm{~d} r=2 \pi I_{0}\left(h^{2}-\exp \left(-r_{0} / h\right) h\left(h+r_{0}\right)\right)
$$

i.e., for $r_{0} \longrightarrow \infty: L\left(r<r_{0}\right) \rightarrow$ const..

If all light comes from stars, i.e., light traces mass, then $M / L \sim$ const., such that $M(<r) \sim$ const. outside a certain radius and $v \propto r^{-1 / 2} \Longrightarrow$ not what is observed!

Canonical interpretation: a large fraction of gravitating material does not emit light \Longrightarrow spiral galaxies have large and massive halos made of dark matter, resulting in $M / L \sim 30$.

Dark Matter: MACHOS

MACHO Event 96-LMC-2

after Alcock et al. (2001, Fig. 2)
MACHOS (Massive Compact Halo Objects): White dwarfs in the galaxy's halo

Pro:

1. very low luminosity objects \Longrightarrow very diffi cult to detect
2. detected by microlensing towards SMC and LMC (see fi gure) \Longrightarrow MW halo consists of 50% white dwarfs

Contra:

1. possible "self-lensing" (by stars in MW or SMC/LMC; confi rmed for a few cases)
2. inferred white dwarf formation rate too high (100 year ${ }^{-1} \mathrm{Mpc}^{-3}$ instead of <1 as previously assumed)

Dark Matter: Nonbaryonic

Nonbaryonic dark matter:

Requirements:

- gravitating
- no or very weak other interaction with baryons (="us")
\Longrightarrow Grab-box of elementary particle physics:

1. Neutrinos with non-zero mass

Pro: It exists, mass limits are a few eV , need only $\left\langle m_{\nu} c^{2}\right\rangle \sim 10 \mathrm{eV}$
Contra: ν are relativistic ($v \sim c$), this has implications for galaxy formation that make it unlikely that they form a major part of dark matter.
2. Axions ($m c^{2} \sim 10^{-5 \ldots-2} \mathrm{eV}$) and WIMPs (weakly interacting massive particles; masses $m c^{2} \sim \mathrm{GeV}$)
Pro: help with cosmology as well
Contra: We do not know they exist. . . (but they might soon be detectable)
\Longrightarrow Jury is still out, question on origin of flat rotation curves is still open.
Mass: Interpretation

MOND

Modified Newtonian Dynamics (Milgrom, 1983ff.; MOND): Alternative to Dark

 MatterReviews: Sanders \& McGaugh, 2002, Ann. Rev. Astron. Astrophys. 40, 263; Milgrom, 2001, astro-ph/0112069

Idea: Modify Newton's Laws:

Acceleration on particle in gravitational fi eld:

$$
a=\frac{G M}{r^{2}} \cdot \frac{1}{\mu\left(a / a_{0}\right)} \text { with } \mu(x) \longrightarrow \begin{cases}1 & \text { for } x \rightarrow \infty \\ x & \text { for } x \rightarrow 0\end{cases}
$$

i.e., for accelerations $a \ll a_{0}, a \longrightarrow \sqrt{G M a_{0} / r^{2}}$, giving circular motion in the limit of small accelerations:

$$
\sqrt{\frac{G M(\leq r) a_{0}}{r^{2}}}=\frac{v^{2}}{r} \quad \Longrightarrow \quad M(\leq r)=\frac{v^{4}}{G a_{0}}
$$

and therefore independent of r !

> MOND can explain the fat rotational curves (by construction!).

Mass: Interpretation

MOND

Fits of rotational curves give

$$
a_{0}=1.2 \times 10^{-8} \mathrm{~cm} \mathrm{~s}^{-2}
$$

and $M / L \sim 1$, so not bad! BUT:

- where is the physics behind a_{0} ?

after Sanders \& McGaugh (2002)
- violation of the strong equivalence principle ("outcome of any physical experiment is independent of where and when in the universe it is performed, and it is independent on whether the experimental apparatus is free falling or stationary")
\Longrightarrow At the moment MOND does not seem to be a viable alternative to other theories of dark matter.
...but it shows that even today people are not afraid to attack Newton's laws, and this is good for progress of physics as a whole

