Einführung in die Astronomie I

Jörn Wilms

Wintersemester 2006/2007

Büro: Dr. Karl Remeis-Sternwarte, Bamberg
Email: joern.wilms@sternwarte.uni-erlangen.de
Tel.: (0951) 95222-13
http://astro.uni-tuebingen.de/~wilms/teach/intro
Friedrich-Alexander-Universität
Erlangen-Nürnberg

NF im Vordiplom/BA: Gebraucht werden:

- Scheine Astronomie I und II
- Astronomisches Praktikum (Schein)

Astronomie im Hauptstudium Physik: hängt davon ab...
PWB: 10 SWS weiterführende Vorlesungen Astro-/Teilchenphysik, davon 2 SWS Theorie
nichtphysikalisches Wahlfach: wie NF im Hauptstudium, nur wenn Astronomie nicht im Vordiplom!
Nebenfächler (NF im Hauptstudium für Nichtphysiker):

- Astronomie I und II
- Eine weiterführende Vorlesung (2 SWS
- Ein physikalischer Praktikumsschein (z.B. Astronomisches Praktikum)

Frühstudium: freiwillig,

- möglich sind Scheine Astronomie I und II

Preliminaries

Scheine?!?

Bologna-Prozess ändert alles: politisch beschlossene Einführung von BA/MA Studiengängen.
Idee: Kumulative Abschlüsse, keine Prüfung am Ende.
An der FAU: Ab WS 2007/2008 BA, aber: Umstieg diesjähriger Erstsemester ist zum WS 2007/2008 (und nur dann!) erlaubt!
\Longrightarrow Impliziert Notengebung in Vorlesungen ab WS 2006/2007!

\Longrightarrow KLAUSUR am 30. Januar 2007

Klausur wird zu einem benoteten Schein führen, auf Wunsch sind bei Bestehen der Klausur auch unbenotete Scheine möglich.

Praktikum

Praktikum wird an der Dr. Karl Remeis-Sternwarte, Bamberg, als Blockpraktikum durchgeführt:

- 12.02.-23.02.2007: NF im Hauptstudium, schon 13 zugel.
- 26.02.-09.03.2007: NF im Hauptstudium, Lehramt
- 10.09.-21.09.2007: NF im Vordiplom/BA, Lehramt
- 24.09.-05.10.2007: NF im Vordiplom/BA, Lehramt
\Longrightarrow Jeweils 15 Plätze pro Termin, wir lassen $30-13-x$ NF Hauptstudium und $40+x$ NF im Vordiplom/Lehramt zu, wo $x \geq 0$.
Eintragung in der Pause, die vorläufige Zulassung erfolgt im Laufe dieser Woche und wird nächste Woche mitgeteilt.

Endgültige Voraussetzung für eine Teilnahme am Praktikum sind normalerweise zwei Scheine aus Astronomie I und II.

Ausnahmen: Nebenfächler im Hauptstudium u.ä.

Preliminaries
3

Carroll \& Ostlie, 1996, Modern Astrophysics, Reading: Addison-Wesley, $€ 80$ (softcover), 1400 pp .
Advanced level, expects good physics background.
Recommended if you want to specialize in astronomy.
Zeilik \& Gregory, 1998, Introductory Astronomy \& Astrophysics, 4th ed., Thomson Learning, €64, 600 pp .
Intermediate level, self contained, but sometimes chaotic order.
Kutner, 2003, Astronomy: A Physical Perspective, Cambridge: Cambridge Univ. Press, €55, 580 pp.
Modern physics based textbook, easy to read. Recommended.

Kartunnen, Kröger \& Oja, 2003, Fundamental Astronomy, Heidelberg:
Springer, €64 (softcover), 500 pp .
Good general overview of astronomy.
Recommended, especially for exam preparation.
UnsÖLd \& BAschek, 2004, Der neue Kosmos. Einführung in die Astronomie und Astrophysik, Berlin: Springer, €50, 577 pp.
Very good overview of stellar astronomy, weaker on extragalactic astronomy. Good secondary reading.
de Pater \& Lissauer, 2004, Planetary Sciences, Cambridge: Cambridge University Press, €93, 544 pp.
The textbook of planetary science.
Good secondary reading.

Literature

History

Early Greek astronomy: folk tale astronomy (Hesiod (730?-? BC), Works and Days). Constellations.
Thales (624-547 BC): Earth is flat, surrounded by water.
Anaxagoras ($500-428 \mathrm{BC}$): Earth is flat, floats in nothingness, stars are far away, fixed on sphere rotating around us. Eclipses: due to Earth's shadow.
Eudoxus (408-355 BC): Geocentric, planets affixed to concentric crystalline spheres. First real model for planetary motions!
Aristarchus (310-230 BC): Determination of relative
distance to Moon and Sun (factor 20).
Atlas Farnese, 2c A.D., Museo Archeologico Nazionale, Napoli

Aristotle (384-322 BC, de caelo): Refinement of Eudoxus model: add spheres to ensure smooth motion
\Longrightarrow Universe filled with crystalline spheres (nature abhors vacuum).
\Longrightarrow Central philosophy until ~ 1450 AD
Hipparchus (?? - ~127 BC): Refinement of geocentric Aristotelian model into tool to make predictions.

First, need to look at the definition of a planet.
Historical background:

- antiquity-1781: 6 planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn
- 1781: Wilhelm Herschel discovers Uranus $\Longrightarrow 7$ planets
- 1801: Giuseppe Piazzi: Ceres $\Longrightarrow 8$ planets
- 1802: Heinrich Olbers: Pallas $\Longrightarrow 9$ planets, Herschel coins term "asteroid".
- 1804: Karl Harding: Juno $\Longrightarrow 10$ planets
- 1807: Heinrich Olbers: Vesta $\Longrightarrow 11$ planets
- 1845: Karl Hencke: Astrea $\Longrightarrow 12$ planets
- 1846: Johann Gottfried Galle discovers Neptune $\Longrightarrow 13$ planets
- 1847: Karl Hencke: Hebe $\Longrightarrow 14$ planets
- 1848: Andrew Graham: Metis $\Longrightarrow 15$ planets
- 1849: Annibale de Gasparis: Hygiea $\Longrightarrow 16$ planets
- 1849: Annibale de Gasparis: Parthenope $\Longrightarrow 17$ planets
- Sometime in late 1800s: Asteroids are not planets $\Longrightarrow 8$ planets

Introduction

What is a planet?

- 1930: Clyde Tombaugh: Pluto $(d=2400 \mathrm{~km}) \Longrightarrow 9$ planets
- 2002: Chad Trujillo \& Michael Brown 50000 Quaoar (d ~ 1300 km)
- 2003: Brown et al.: 90377 Sedna ($1200 \mathrm{~km} \lesssim d \lesssim 1800 \mathrm{~km}$)
- 2005: Brown et al.: 2003 UB313 (aka "Xena") ($d \sim 2400$ km) $\Longrightarrow 136199$ Eris
$\Longrightarrow 10$ planets ?!?
- BUT: High frequency of discovering transneptunian objects

Summer 2006: International Astronomical Union General Assembly, Prague
\Longrightarrow Resolution GA26/5 and 6:Definition of a planet
$\Longrightarrow 8$ planets
(a) is in orbit around the Sun,

(c) has deared the neighbourbood around is orbit.
(2) A "dwarf flanet" is acelestial body tha
(a) is in ortit round the sun,

.
(c) has not teared the
(d) is notat satellite.
(3) All ootere obiects, exeepl satilies orbiing the sun shall be referred to

Neptume: An IAu process vill be estabisised to asigig borserfine objects ino eitiere dwarf phane

Overview, I

Division of Solar System into two major types of planets:

1. Inner "Terrestrial" Planets: Mercury, Venus, Earth/Moon, Mars:

\Longrightarrow all similar to Earth ("rocks").

\Longrightarrow no moons (Earth/Moon better called "twins")

Overview, III

Division of Solar System into two major types of planets:

1. Inner "Terrestrial" Planets: Mercury, Venus, Earth/Moon, Mars: \Longrightarrow all similar to Earth ("rocks").
\Longrightarrow no moons (Earth/Moon better called "twins")
\Longrightarrow Moons of
2. Outer Planets: Jupiter, Saturn, Uranus, Neptune:
\Longrightarrow "gas giants"
\Longrightarrow all have extensive moon systems
Although not planets (i.e., motion not around Sun), large moons of gas giants are very similar in structure to terrestrial planets.

The Inner Planets (SSE, NASA)

The Outer Planets (SSE, NASA)

		a [AU$]$	$P_{\text {orb }}[y r]$	$\left.i{ }^{\circ}{ }^{\circ}\right]$	e	$P_{\text {rot }}$	M / M_{\oplus}	R / R_{\oplus}
Mercury	¢	0.387	0.241	7.00	0.205	58.8 d	0.055	0.383
Venus	¢	0.723	0.615	3.40	0.007	-243.0d	0.815	0.949
Earth	\oplus	1.000	1.000	0.00	0.017	23.9 h	1.000	1.00
Mars	0^{7}	1.52	1.88	1.90	0.094	24.6 h	0.107	0.533
Jupiter	4	5.20	11.9	1.30	0.049	9.9 h	318	11.2
Saturn	\hbar	9.58	29.4	2.50	0.057	10.7 h	95.2	9.45
Uranus	¢	19.2	83.7	0.78	0.046	-17.2h	14.5	4.01
Neptune	\%	30.1	163.7	1.78	0.011	16.1 h	17.1	3.88
(Pluto	E	39.2	248	17.2	0.244	6.39 d	0.002	0.19)

After Kutner, Appendix D;
$P_{\text {orb: }}$: orbital period $\quad i$: orbital inclination (wrt Earth's orbit)
e : eccentricity of the orbit $P_{\text {rot }}$: rotational period M : mass
R : equatorial radius
$1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$.

Planets: Overview

NASA/USGS

Mercury:

- not much larger than Moon
- densest of all terrestrial planets
- no evidence for atmosphere
- Rotation period: 59 d, 2/3 of orbital period.
- surface: impact craters and tectonics
- Only information available is from Mariner 10 (three flybys, 1974/1975)
- NASA mission "Messenger" (launched 2004 August 3, flyby 2008 and 2009, in orbit from 2011 on)
- ESA Mission Bepi Colombo, planned for \sim Aug. 2013, arrival Aug. 2019

/enus:
- similar size to Earth, similar structure
- insolation $\sim 2 \times$ Earth
- very slow rotation (243d, retrograde; \Longrightarrow no B-field)
- very dense atmosphere: surface pressure $\sim 90 \times$ Earth
- atmosphere: $96.5 \% \mathrm{CO}_{2}, 3.5 \% \mathrm{~N}$ \Longrightarrow strong greenhouse effect \Longrightarrow surface temperature $\sim 460^{\circ} \mathrm{C}$.
- acid rain (yes, sulphuric acid!)

Information mainly from radar surveying from Earth and from Magellan (1990-1994), plus images from Pioneer Venus Probe (1979). Several landings (Venera, 1975/1981). Currently studied by ESA's Venus Express probe (launch April 2005, arrival April 2006).

Earth:

- double planet system
- Earth surface: dominated by plate tectonics, erosion
- atmosphere: $80 \% \mathrm{~N}_{2}, 20 \% \mathrm{O}_{2}$ \Longrightarrow moderate greenhouse effect \Longrightarrow surface temperature $>0^{\circ} \mathrm{C}$.
- water present

Moon:

- very similar to Mercury, overall
- Mariae (plains from massive impacts) and impact craters
- Rotation synchronous to orbit around Earth

The jovian planets, (C)C.J. Hamilton

Mars:

- smaller than Earth
- very low density ($\langle\rho\rangle \sim 3 \mathrm{~g} \mathrm{~cm}^{-3}$) \Longrightarrow small core, probably Fe and $\mathrm{Fe}_{x} \mathrm{~S}_{y}$,
- polar caps, seasons
- thin atmosphere, clouds, fog,...
- water sublimes \Longrightarrow no liquid water today
- Volcanism (large shield volcanoes \Longrightarrow no (?) plate tectonics)
- atmosphere: $95 \% \mathrm{CO}_{2}$ \Longrightarrow weak greenhouse effect
- two moons (captured asteroids)

NASA, Mars Global Surveyor
Early Exploration through Mariner missions and Viking 1 and Viking 2 orbiters and landers in 1970s, recently, strong interest (NASA Mars Global Surveyor [MGS], ESA Mars Express, plus several landers). Currently best surveyed planet except for Earth.

Jupiter:

- Largest planet in solar system
- rapid rotation \Longrightarrow severely flattened, banded atmosphere (Coriolis force), Great Red Spot
- strong magnetic field (strong radio emission)
- atmosphere: $75 \% \mathrm{H}, 24 \% \mathrm{He}$ (by mass), very close to solar
- differential rotation (rotation period 9 h 50 m on equator, 9 h 55 m on poles).
- strong magnetic field
- four major "Galilean" moons plus 59 small ones (as of Jan. 2005; all are captured asteroids)

NASAEESA, Cassini-Huyghens
Early Exploration 1970s through Pioneer 11 and 12, and then through the Voyager probes. Extensively studied by NASA's Galileo project (ended 2003 Sep 14).

NASA/ESA Cassini, 2004 Oct.

Saturn:

- similar to Jupiter, slightly smaller
- rapid rotation \Longrightarrow flattened, banded atmosphere
- atmosphere: $75 \% \mathrm{H}, 24 \% \mathrm{He}$ (by mass), molecules etc. similar to Jupiter
- Rings!
- six major moons plus 27 small ones (as of Jan. 2005; mainly captured asteroids)
- Early Exploration in 1970s with Pioneer 11 and 12 and the Voyager probes. Studied since 2004 July 1 by NASA/ESA Cassini-Huygens project (duration: four years)

Neptune:

- atmosphere similar to Uranus, but more active; bright methane clouds above general cloud layer
- ring system (5 individual rings)
- Two major moons (Triton, 2720 km diameter(!) and Nereid 355 km), 11 captured asteroids

NASA Voyager 2
Flyby in 1989 August by Voyager 2, only HST since then (showed in 1995 that dark spot has vanished, detected new storm system

NASA Voyager 2, 1986 Jan 10

Uranus:

- atmosphere cold $\left(59 \mathrm{~K}=-214^{\circ} \mathrm{C}\right)$ \Longrightarrow ammonia has frozen out
- methane, hydrogen, and helium detected so far (less He than expected from Jupiter and Saturn!) \Longrightarrow bluish color
- inclination of rotation axis: 98° ("rolling on ecliptic plane").
- small ring system
- five major moons in equatorial plane plus 22 small ones (as of Jan. 2004; captured asteroids)

Flyby of Voyager 2 in 1986 January, since then only remote sensing via Hubble Space Telescope (HST) and ground based instruments.

Questions that we will deal with:

1. How do the planets move?

Kepler's laws and their physical interpretation
2. What do planetary surfaces look like? craters, plate tectonics, volcanism
3. How do planetary atmospheres work? hydrostatic structure
4. What is the internal structure of the planets? hydrostatic structure (again)
5. Is the solar system normal? Are there planets elsewhere?

Kepler's $1^{\text {st }}$ Law: The orbits of the planets are ellipses and the Sun is at one focus of the ellipse.

For the planets of the solar system, the ellipses are almost circular, for comets they can be very eccentric.

Introduction

Johannes Kepler: Motion of planets governed by three laws:

1. Each planet moves in an elliptical orbit, with the Sun at one focus of the ellipse. ("Astronomia Nova", 1609)
2. A line from the Sun to a given planet sweeps out equal areas in equal times. ("Astronomia Nova", 1609)
3. The square of the orbital periods of the planets is proportional to the cube of the major axes. ("Harmonice Mundi", 1619)
Isaac Newton ("Principia", 1687): Kepler's laws are consequence of gravitationa interaction between planets and the Sun, and the gravitational force is

$$
\begin{equation*}
\boldsymbol{F}_{1}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \frac{\boldsymbol{r}_{21}}{r_{12}} \tag{4.1}
\end{equation*}
$$

where \boldsymbol{F}_{1} is the gravitational force exerted on object $1, m_{1}, m_{2}$ are the masses of the interacting objects, r their distance, and $\boldsymbol{r}_{21} / r_{12}$ the unit vector joining the objects, $\boldsymbol{r}_{21}=\boldsymbol{r}_{2}-\boldsymbol{r}_{1}, \boldsymbol{r}_{12}=-\boldsymbol{r}_{21}$ and $r_{12}=\left|r_{12}\right|=\left|r_{21}\right|$.

Keplers 1st Law

Definition: Ellipse = Sum of distances r, r^{\prime} from any point on ellipse to two fixed points (foci, singular: focus), F, F^{\prime}, is constant:

$$
\begin{equation*}
r+r^{\prime}=2 a \tag{4.2}
\end{equation*}
$$

where a is called the semi-major axis of the ellipse.

Definition: Eccentricity e : ratio between distance from centre of ellipse to focal point and semi-major axis.
So circles have $e=0$.

Keplers 1st Law

Law of cosines: $r^{\prime 2}=r^{2}+(2 a e)^{2}-2 \cdot r \cdot 2 a e \cdot \cos (\pi-\theta)$
use $r+r^{\prime}=2 a$ and solve for r to find the polar coordinate form of the ellipse:

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}
$$

Check this for yourself! θ is called the true anomaly.

Keplers 1st Law

Finally, we need the closest and farthest point from a focus:

$$
\begin{align*}
& \text { closest point : } d_{\text {perihelion }}=a-a e=a(1-e) \\
& \text { farthest point : } d_{\text {aphelion }}=a+a e=a(1+e) \tag{4.4}
\end{align*}
$$

for stars: periastron and apastron,
for satellites circling the Earth: perigee and apogee.
Kepler's Laws

Kepler's 2nd law is a direct consequence of the conservation of angular momentum. Remember that angular momentum is defined as
$L=r \times p=r \times m v$
$L=m r v \sin \phi$ (4.6)

To interpret the angular momentum, look at the figure at the left. The projection of the velocity
vector perpendicular to the radius vector r is v sin ϕ. The distance traveled by the panet in vector perpendicular to the radius vector r is $v \sin \phi$. The distance traveled by the planet in an
infinitesimally short time Δt is given by $\Delta x=\Delta t \cdot v \sin \phi$. Therefore, the area of the triangle $A B C$ is given by A
$\Delta A=\frac{\overline{2}^{r}}{}{ }^{r} \Delta x=\frac{-}{2} r \Delta t v \sin \phi=\frac{1}{2 m}$
Kepler's 2nd law states that the "sector velocity" $d A / d t i$ is constant with time:

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta A}{\Delta t}=\frac{L}{2 m}=\text { const. }
$$

(4.8)

To confirm that this claim is true, we need to prove that
$\frac{\mathrm{d}}{\mathrm{d} t} \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{1}{2 m} \frac{\mathrm{~d} L}{\mathrm{~d} t}=0$
(4.9)
$\frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} t} \times \boldsymbol{p}+\boldsymbol{r} \times \frac{\mathrm{d} \boldsymbol{p}}{\mathrm{d} t}=\boldsymbol{v} \times \boldsymbol{p}+\boldsymbol{r} \times \boldsymbol{F}=\boldsymbol{v} \times m \boldsymbol{v}+\boldsymbol{r} \times \frac{G M m}{r^{2}} \frac{\boldsymbol{r}}{r}=0$
(4.10)

Circular Motion

canceling m_{1} and m_{2} results

Dividing these two equations by each other gives

$$
\begin{aligned}
& \frac{4 \pi^{2} r_{1}}{P^{2}}=G \frac{m_{2}}{\left(r_{1}+r_{2}\right)^{2}} \\
& \frac{4 \pi^{2} r_{2}}{P^{2}}=G \frac{m_{1}}{\left(r_{1}+r_{2}\right)^{2}}
\end{aligned}
$$

$$
\frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}} \text { or } m_{1} r_{1}=m_{2} r_{2}
$$

4-9

This is the definition of the center of mass.
The total distance between the two bodies is
Iserting into one of the equations 4.15 gives
such tha
This is Newton's form of Kepler's 3rd law.

$$
\begin{gathered}
R=r_{1}+r_{2}=r_{1}+\frac{m_{1}}{m_{2}} r_{1}=r_{1}\left(1+\frac{m_{1}}{m_{2}}\right) \\
\frac{4 \pi^{2}}{P^{2}} \cdot R \cdot \frac{m_{2}}{m_{1}+m_{2}}=\frac{G m_{2}}{R^{2}}
\end{gathered}
$$

$$
\frac{4 \pi^{2}}{P^{2}}=\frac{G\left(m_{1}+m_{2}\right)}{R^{3}} \text { or } P^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)} R^{3}
$$

$P^{2} \propto a^{3}$.

Calculating the motion of two bodies of mass m_{1} and m_{2} gives Newton's form of Kepler's third law:

$$
\begin{equation*}
P^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)} R^{3} \tag{4.11}
\end{equation*}
$$

where $r_{1}+r_{2}=R$ (for elliptical orbits: R is the semi-major axis).

3rd Law

Newton's form of Kepler's 3rd law is the most general form of the law.
However, often shortcuts are possible.
Assume one central body dominates, $m_{1}=M \gg m_{2}$:

$$
\begin{equation*}
\frac{P^{2}}{a^{3}}=\frac{4 \pi^{2}}{G M}=\text { const. }=k \tag{4.22}
\end{equation*}
$$

So, if we know P and a for one body moving around m_{1}, can calculate k.
For the Solar System, use Earth:

- $P_{\oplus}=1$ year (by definition!)
- $a_{\oplus}=1 \mathrm{AU}$ (Astronomical Unit, $1 \mathrm{AU}=149.6 \times 10^{6} \mathrm{~km}$)
$\Longrightarrow k=1 \mathrm{yr}^{2} \mathrm{AU}^{-3}$
Jupiter: $a_{4}=5.2 \mathrm{AU}$. What is its period?

