

Coordinates

Siderial Time, II
Note: Siderial time \neq common time

Common time: 24 h between culminations of the Sun (i.e., passes of Sun through meridian).

BUT

Sun moves on sky towards east
\Longrightarrow one "solar day" takes slightly longer than one rotation of the Earth
Angular speed of Sun: 360° degrees in 365.25 days, i.e., $0.9856^{\circ} \mathrm{d}^{-1}$.
\Longrightarrow During 365.25 days the Earth rotates 364.25 times
\Longrightarrow Earth's rotation takes $24 \mathrm{~h} \times 364.25 / 365.25=23 \mathrm{~h} 56$ minutes .

Coordinates

Precession and Nutation

There is one last problem, however:
Earth is \sim rotational ellipsoid, orbits of Sun and Moon are not in plane of equator (Earth's axis has tilt of $\sim 23.5^{\circ}$, moon's orbit tilted by 7° against ecliptic)
\Longrightarrow Sun and Moon excert torques onto Earth
Earth's rotational axis is not stable in space.

Two major effects:

Iunisolar precession: Earth's axis rotates around pole of ecliptic once every 25800 years ($\sim 50^{\prime \prime}$ per year).
Already discovered by Hipparcus in $\sim 200 \mathrm{BC}$!
nutation: "Wobble" with ~ 18 year periodicity caused by short-term perturbations caused by Moon and Sun.
\Longrightarrow Need to state epoch for coordinates. Typically use 1950.0 or 2000.0.

Bayer's Uranometria (1603; University of Illinois collections)
Aldebaran $=\alpha$ Tau: $\alpha_{\text {J2000.0 }}=04^{\text {h }} 35^{\mathrm{m}} 55.2387^{\mathrm{s}}, \delta_{\mathrm{J} 2000.0}=+16^{\circ} 30^{\prime} 33.485^{\prime \prime}$ corresponding to $\alpha_{\mathrm{B} 1950.0}=04^{\mathrm{h}} 33^{\mathrm{m}} 02.9^{\mathrm{s}}, \delta_{\mathrm{B} 1950.0}=+16^{\circ} 24^{\prime} 37.6^{\prime \prime}$

THE ELECTROMAGNETIC SPECTRUM

\square
Introduction

As we all know, light can be characterized by

Wavelength: λ, measured in $\mathrm{m}, \mathrm{mm}, \mathrm{cm}, \mathrm{nm}, \AA$.
Frequency: ν, measured in $\mathrm{Hz}, \mathrm{MHz}$.
Energy: E, measured in J, erg, Rydbergs, eV, keV, MeV, GeV.
Temperature: T, measured in K .
These quantities are related:

$$
\begin{equation*}
\lambda \nu=c \quad E=h \nu \quad T=E / k \tag{8.1}
\end{equation*}
$$

where

$$
\begin{align*}
c & =299792458 \mathrm{~m} \mathrm{~s}^{-1} \tag{8.2}\\
h & =6.6260693(11) \times 10^{-34} \mathrm{~J} \mathrm{~s} \tag{8.3}\\
k & =1.3806505(24) \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \tag{8.4}
\end{align*}
$$

Constants are 2002 CODATA values, http://physics.nist.gov/cuu/Constants/index.html uncertainty is 1σ in units of last digit shown.

Reflectors,

To collect light, we have two possibilities:

1. Lenses: Refractors

Disadvantage: lens cannot be supported from the back \Longrightarrow limits max.
diameter to $\lesssim 2 \mathrm{~m}$
\Longrightarrow not of interest for science anymore.
2. Mirrors: Reflectors

Mirrors can be supported, instrument of choice for today, with diameters up to 11 m

Optical Telescopes

Resolution of telescope: ability to separate two (point-like) light sources

Rayleigh criterion for resolution: maximum of diffraction pattern of one source must fall into minimum of diffraction pattern of other source.

Therefore the diffraction limited resolution is

$$
\alpha=\frac{1.220 \lambda}{d}=\frac{12^{\prime \prime}}{D / 1 \mathrm{~cm}} \quad \text { for optical light }
$$

Note: Rayleigh criterion is a criterion, not a law. Detailed object separability depends on ratio of intensities of two objects, in practice resolutions up to $3 \times$ smaller are acheivable.

Optical Telescopes

Cassegrain telescope, after Wikipedia
Cassegrain telescope: reflector with "folded optical path"
\Longrightarrow Much shorter than Newtonian
\Longrightarrow Telescope of choice for modern instruments

Schmidt Telescope

Schmidt telescope: Uses spherical mirror for larger field view, correction plate used to correct for spherical aberration.

Many amateur telescopes are combination of Schmidt telescope and Cassegrain telescope \Longrightarrow Schmidt-Cassegrain telescopes

Optical Telescopes

Example: Building of the European Southern Observatory's Very Large Telescope

ESO

Scheme of an adaptive optics system (Lick observatory)

Picture of the galactic centre in the IR taken with the Gemini North

Active Optics, VI

Picture of the galactic centre in the IR taken with the Gemini Northand corrected with adaptive optics
\Longrightarrow Resolution: diffraction limited!
$\theta=1.22 \mathrm{rad} \cdot \lambda / d \sim 70$ mas (8.9) (for $d=8 \mathrm{~m}, \lambda=2.2 \mu \mathrm{~m}$)
Gemini North/AURA

