

Possible ways to detect extrasolar planets:

Direct Method:

- ... direct imaging of planet

Indirect Methods: search for evidence for...

- ... gravitational interaction with star in radial velocity
- . . . gravitational interaction with star in motion of star
- ... influence of planet on light from behind planet (gravitational lensing)

For time reasons: will look at direct imaging and radial velocity measurements only...

Detection Methods

In order to make an image of an extrasolar planet, need to separate images of star and planet with telescope
\Longrightarrow Requires two ingredients:

1. "contrast" (relative intensity of star and planet)
2. "resolving power" of telescope (angular distance between star and planet)

Solar system: Luminosity of Sun $L=3.90 \times 10^{26} \mathrm{~W}=: L \odot$
This power is emitted isotropically into all directions.
\Longrightarrow Energy received per second on whole area of sphere of radius r (area $A=4 \pi r^{2}$) equals L as well!
\Longrightarrow Energy falling per second on area of $1 \mathrm{~m}^{2}$ at distance r ("flux"):

$$
F=\frac{L}{4 \pi r^{2}}
$$

units: Wm^{-2} or $\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$

Plugging in typical numbers:

Earth:

distance: $r=1 \mathrm{AU}=150 \times 10^{6} \mathrm{~km}$
$\Longrightarrow P \sim 1380 \mathrm{Wm}^{-2}$ ("solar constant").
Total power received by Earth: projected solar facing area
$A=\pi r_{\oplus}^{2}=1.26 \times 10^{14} \mathrm{~m}^{2}$
\Longrightarrow Total power received: $P_{\text {total }, \oplus}=1.74 \times 10^{17} \mathrm{~W}$.
Of this, about 30% is reflected, i.e., $L_{\oplus}=5.2 \times 10^{16} \mathrm{~W} \sim 10^{-10} L_{\odot}$.

$$
\begin{aligned}
& \text { The luminosity of the Earth is } 10 \text { billion times weaker than that of the } \\
& \text { Sun. }
\end{aligned}
$$

in infrared, luminosity contrast is only 10 million, but still rather weak. .

Plugging in typical numbers:

Jupiter:

distance: $r=5.2 \mathrm{AU}=7.8 \times 10^{8} \mathrm{~km} \Longrightarrow P \sim 51 \mathrm{Wm}^{-2}$
Total power received by Jupiter: projected solar facing area
$A=\pi r_{4}^{2}=1.6 \times 10^{16} \mathrm{~m}^{2}$
\Longrightarrow Total power received: $P_{\text {total }, 4}=8.2 \times 10^{17} \mathrm{~W}$.
Of this, about 30% is reflected, i.e., $L_{4}=2.5 \times 10^{17} \mathrm{~W} \sim 6 \times 10^{-10} L_{\odot}$.
The luminosity of Jupiter is ~ 1 billion times weaker than that of the Sun.
\Longrightarrow For typical planets around solar type stars, we need to be able to detect intensity contrasts of better than $1: 1$ billion.
\Longrightarrow Not doable now, but not unrealistic to achieve in your lifetime ("coronagraphs")...

Detection Methods

Direct Imaging: Angular Separation, V

Optics: resolving power of telescope with diameter D :

$$
\begin{equation*}
\alpha=\frac{12^{\prime \prime}}{D / 1 \mathrm{~cm}} \tag{8.8}
\end{equation*}
$$

\Longrightarrow to resolve $0.03^{\prime \prime}$, need $D=4 \mathrm{~m}$, so doable
BUT
Earth atmosphere limits resolution to $\sim 0.5^{\prime \prime}$ ("seeing")
Currently, direct detection of extrasolar planets around solar-type stars is not doable from ground, although it is technologically feasible from
space.
NASA: Space Interferometry Mission and Terrestrial Planet Finder: 2 missions in the next decade(?): 4-6 m telescope (TPF-C); multiple 3-4 m telescopes (TPF-I, w/ESA)
ESA: Darwin: $3 \gtrsim 3 \mathrm{~m}$ telescopes, launch planned for 2015

Using adaptive optics, it is possible to obtain diffraction limited resolution in the near infrared.
Contrast is still a problem, however, for one very dim star (a "brown dwarfs") a planetary companion was detected in early 2005 with the VLT and confirmed in 2006 with HST. Distance between star and planet: $\sim 2 \times$ Neptune distance, distance to system $59 \pm 7 \mathrm{pc}$.

The Brown Dwarf 2M1207 and its Planetary Companion VLT/NACO) (VLTNACO)

One possible configuration of ESA's Darwin mission: several free-flying mirror spacecraft plus one spacecraft serving as communications hub.

N.A. Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF Absorption line spectrum of the Sun: Fraunhofer Lines

Detection Methods

G. Marcy

How to hunt extrasolar planets using the Doppler Detection Method:

1. get access to lots of telescope time
2. get access to very good spectrograph
3. measure for years, to determine changes in velocity of stars due to motion of star around CM

As of 2006 November 28, 195 extrasolar planets were known, circling 172 stars

Results

G. Marcy/UC Lick

Velocity signature and orbits of the three planets around v Andromedae.

Results

Selection effect: large $M \Longrightarrow$ larger velocity amplitude

\Longrightarrow easier to detect!
So, the fact that we have not seen any Earth-like planets does not mean that they do not exist, just that we cannot detect them yet. Smallest mass found so far: $7.5 M_{\oplus}$ around Gliese 876

Results

Selection effect: small $a \Longrightarrow$ short period
\Longrightarrow detectable in small amount of time (years, not decades)

Statistics is direct consequence of the selection effect of the previous slide: short period planets are detectable during typical durations of observing runs...

Results

Results: Eccentricity

Many planets are in eccentric orbits!
different from solar system!
Might be selection effect due to our existence:
Jupiter in eccentric orbit in our solar system
\Longrightarrow strong disturbances of Earth's orbit \Longrightarrow no life!
So, in some sense Copernican principle does not always seem to hold!

But not all is bleak - HD 70642 ($d=90$ ly): discovered by Hugh Jones (Liverpool John Moores University): Jupiter mass planet at 3 AU from solar-like star in circular orbit

