Stellar Structure and Evolution

IR View of B68 (ESO; VLT/FORS1 + NTT/SOFI)

Optical View of B68 (ESO; VLT/FORS1)

Stellar Birth

Stars are born in "Giant Molecular Clouds"
Typical GMC parameters (e.g., Orion):

- large clouds: typical diameters 50-100 pc
- contain lots of molecular gas ($\mathrm{H}_{2}, \mathrm{CO}$, alcohol,....).
- typical temperatures: 10-20 K (coolest regions in the interstellar medium)
- typical particle densities $n \sim 10^{6}-10^{10} \mathrm{~cm}^{-3}$

Stars are born in groups out of collapsing Molecular Clouds.

Collapse triggered, e.g., by collisions of clouds or shocks caused by nearby supernovae.

Criterion for collapse: Cloud is instable, i.e., gravitation is stronger than thermal pressure.
In terms of thermal and gravitational energies, this means

$$
\begin{equation*}
\frac{3}{2} \frac{M}{m_{\mathrm{p}}} k T-\frac{3}{5} \frac{G M^{2}}{R} \leq 0 \tag{11.1}
\end{equation*}
$$

This can be expressed as

$$
\begin{equation*}
\frac{M}{R} \geq \frac{5}{2} \frac{k T}{G m_{\mathrm{p}}} \text { or } \frac{4 \pi}{3} \rho R^{2} \geq \frac{5}{2} \frac{k T}{G m_{\mathrm{p}}} \tag{11.2}
\end{equation*}
$$

\Longrightarrow Depends on R, collapse thus possible for

$$
\begin{equation*}
R>R_{\mathrm{J}}=\sqrt{\frac{15 k T}{8 \pi G m_{\mathrm{p}} \rho}} \sim \sqrt{\frac{k T}{G m_{\mathrm{p}} \rho}} \tag{11.3}
\end{equation*}
$$

where R_{J} is called the Jeans radius.

Stellar Birth

Plugging in typical typical numbers, ie., $T \sim 50 \mathrm{~K}$, particle density $n=10^{5} \mathrm{H}$-atoms cm ${ }^{-3}$ (that is a mass density of $\rho=n m_{\mathrm{p}} \sim 1.7 \times 10^{-9} \mathrm{~g} \mathrm{~cm}^{-3}$) gives $R_{\mathrm{J}} \sim 0.2 \mathrm{pc}$.
For a given Jeans radius, the mass within R_{J} is the Jeans mass

$$
M_{\mathrm{J}} \sim \frac{4 \pi}{3} R_{\mathrm{J}}^{3} \rho
$$

... which has typical values of 50-100 M_{\odot}, ie., larger than one star!

In reality things are more complicated: ISM contains magnetic fields
\Longrightarrow Particle motion $\perp B$-field lines difficult
\Longrightarrow stops gas from collapsing.
This is good since Jeans formalism alone predicts too strong star formation.

\Longrightarrow Need star formation with magnetic fields

See Shy et al. (1987, Annual Reviews of Astronomy and Astrophysics 25, 23) for the gory details.
a

Shy et al. (1987, ARAA 25, 23, Fig. 7)
Stellar mass cores form from fragmentation of larger pieces. Note: fragmentation only along B-field lines.

Shy et al. (1987, ARAA 25, 23, Fig. 7)
Protostar forms with surrounding disk ("inside out collapse") once core hot enough to allow fusion ($T>10^{6} \mathrm{~K}$)

Shu et al. (1987, ARAA 25, 23, Fig. 7) Stellar wind forms bipolar outflow

Orion (Bayer's Uranometria; image © CUSNO)

Orion Nebula; R. Gendler

Orion Nebula; R. Croman

Photo Credit: T. Rector (Univeristity of Alaska) Eagle-nebula (M16)

"pillars of creation" in Eagle Nebula (M16)

Stellar EGGs in M16

The surface of a molecular cloud is illuminated by intense ultraviolet radiation from nearby hot stars. The radiation evaporates material off of the surface of the cloud.

As the cloud is slowly eaten away by the ultraviolet radiation, a denser than average globule of gas begins to be uncovered

The EGG has now been largely uncovered. The shadow of the EGG protects a column of gas behind it, giving it a fing erlike appearance.

Eventually the EGG may become totally separated from teh molecular cloud in which it formed. As the EGG itself slowly evaporates, the star within is uncovered and may appear sitting on the front surface of the EGG.

d

Shu et al. (1987, ARAA 25, 23, Fig. 7)

Star has reached zero age main sequence (ZAMS) plus circumstellar disk. Some disks produce fast collimated outflows (jets): Herbig Haro Objects

HH34 in Orion (ESO VLT KUEYEN/FORS2)
Herbig Haro Objects: shocks and jets/outflows produced during formation of stars.

Palla \& Stahler (1993, ApJ 418, 414; numbers are time in 10^{6} years)
Stellar Evolution from protostar to ZAMS takes a few million years.

Once star has collapsed and nuclear fusion has started: zero age main sequence (ZAMS) is reached

The Main Sequence is the result of steady state fusion ("burning") of hydrogen into helium in stellar centers.
... longest phase of stellar evolution (10 billion years for Sun)

Stellar structure defined by balance between pressure inwards due to gravitation and pressure outwards due to energy release ("hydrostatic equilibrium").

Pleiades (R. Gendler; $d=150 \mathrm{pc}$, diameter: $5 \mathrm{pc}, 3000$ stars
Once stars have formed, strong UV radiation removes residual dust (still seen as a reflection nebula) and an open cluster is formed.

The Sun: A typical star (ESA/NASA SOHO)

In the following we derive the equations of stellar structure.
In hydrostatic equilibrium, gravitation pulls material in directon of the center of the star. This gravivational pressure is counteracted by gas pressure. Force balance on a particle dm:
Gravitational force downwards:

$$
d F_{g}=-\frac{G M_{r} d m}{r^{2}}=-\frac{G M_{r} \rho}{r^{2}} d A d r
$$

(11.4)

Let the pressure at the base of the volume element be P, and that at the top $P+d P$. Then the pressure force acting on the volume element is

$$
d F_{P}=P d A-(P+d P) d A=-d P d A
$$

Since pressure decreases towards the outside, $d P$ is negative and F_{P} positive.
In equilibrium:

$$
d F_{g}=-d F_{P}
$$

and therefore

$$
-\frac{G M_{r} \rho}{r^{2}} d A d r=d P d A
$$

$$
(11.7)
$$

$$
\begin{array}{ll}
\text { such that } & \frac{r^{2}}{d r}=-\frac{G M_{r} \rho}{r^{2}}
\end{array}
$$

The mass distribution is obtained by mass conservation. The mass within a spherical shell is
$d M_{r}=4 \pi r^{2} \rho d r$
and therefore

$$
\frac{d M_{r}}{d r}=4 \pi r^{2} \rho
$$

Conservation of energy is taken into account by asking that all mass generated within the star has to be transported to its surface (where itis radiated away).
We call ϵ the energy production coefficient, i.e., the energy released within the star per time and mass. Then the change in luminosity due to energy generation within a
small shell is $d L_{r}=\epsilon d M_{r}=4 \pi r^{2} \rho \epsilon d r$

$$
\frac{d L_{r}}{d r}=4 \pi r^{2} \rho \epsilon
$$

Lastly, we need to take a look at the temperature gradient, i.e., the transport of energy.
Energy is transported in stars by
$\underset{-}{-}$ conduction

- convection

In most stars, either convection or radiation is important, conduction can usually be ignored.
The derivation of the emperature gradient equation is rather complicated and will not te done here. In the end one obtains for the case of energy transport by radiation

$$
\frac{\mathrm{d} T}{\mathrm{~d} r}=-\frac{3}{4 a c} \frac{\kappa \rho(r)}{T^{3}} \frac{L(r)}{4 \pi r^{2}}
$$

where a, k, and c are constants.
For the case of convection

$$
\frac{d T}{d r}=\left(1-\frac{1}{\gamma}\right) \frac{T}{P} \frac{d P}{d r}
$$

(11.14)

To sove these four equations, one needs the Doundary conditions

- at $r=0: M_{r}=0$ and $L(0)=0$
- at $r=R: P(R)=0, T(R)=0, M_{r}(R)=M$

Furthermore one needs to know.

- equation of state: in the simplest case: $P=n k T=\rho k T /\left(\mu m_{p}\right)$ where μ is the mean molecular weign
- energy generation: $\epsilon=\epsilon(T, \rho$, chemical compostion)

Stellar structure governed by four coupled differential equations:

Mass structure

(mass conservation)

$$
\frac{\mathrm{d} M}{\mathrm{~d} r}=4 \pi r^{2} \rho(r)
$$

Temperature structure (energy transport)

$$
\frac{\mathrm{d} T}{\mathrm{~d} r}=-\frac{3}{4 a c} \frac{\kappa \rho(r)}{T^{3}} \frac{L(r)}{4 \pi r^{2}}
$$

Pressure structure (hydrostatic equilibrium)

$$
\frac{\mathrm{d} P}{\mathrm{~d} r}=-\rho(r) \frac{G M(r)}{r^{2}}
$$

Energy conservation (energy transport)

$$
\frac{\mathrm{d} L}{\mathrm{~d} r}=4 \pi r^{2} \rho(r) \epsilon(r)
$$

plus "equation of state" $(P=P(T, \rho))$, energy generation $(\epsilon=\epsilon(T, \rho, Z))$,. .

> Stellar model: numerical solution of stellar structure equations.

Stellar Structure

Energy generation: Overview

11-29

Main sequence: Nuclear fusion of Hydrogen into Helium:

$$
4 \mathrm{p} \longrightarrow{ }_{2}^{4} \mathrm{He}+E
$$

How much energy is gained?
Particle physics: express mass as "rest energy equivalent" via $E=m c^{2}$
(and call it "mass". . .); usually use energy units of $\mathrm{MeV}, 1 \mathrm{MeV}=1.602 \times 10^{-13}$ J

mass of 4 protons $(4 \times 938 \mathrm{MeV}):$3752 MeV 3727 MeV	
mass of ${ }_{2}^{4} \mathrm{He}:$	25 MeV

In the fusion of hydrogen to helium, 0.7% of the available rest mass energy is converted to energy.

Two main burning cycles: proton-proton chain and the CNO cycle.
For moderate central temperatures, He is produced using the proton proton chain.
First, two protons create a deuteron:

$$
\begin{equation*}
{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \longrightarrow{ }^{2} \mathrm{H}+\mathrm{e}^{+}+\nu_{\mathrm{e}} \tag{11.15}
\end{equation*}
$$

This process is slow (happens once for a nucleon per 10^{10} years)
Then an additional proton is attached:

$$
{ }^{2} \mathrm{H}+{ }^{1} \mathrm{H} \longrightarrow{ }^{3} \mathrm{He}+\gamma
$$

(11.16)
and two helium nuclei can form an alpha particle

$$
\begin{equation*}
{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \longrightarrow{ }^{4} \mathrm{He}+2^{1} \mathrm{H} \tag{11.17}
\end{equation*}
$$

This is the so called pp I-cycle, minor variations of the theme exist (pp II, pp III cycles), but pp I dominates. pp chain dominates for $T \lesssim 2 \times 10^{7} \mathrm{~K}, \epsilon_{\mathrm{pp}} \propto T^{5}$; Sun: 98.4\%.

The Sun

To get a feel for what is going on, let's do some order of magnitude astrophysics. See, Karttunen, chapter 11, for more on this.
Sun: $M=2 \times 10^{30} \mathrm{~kg}$ and $R=700000 \mathrm{~km}$.
Therefore, the surface acceleration on the Sun is

$$
\begin{array}{ll}
g=\frac{G M}{R^{2}}=\frac{6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \cdot 2 \times 10^{30} \mathrm{~kg}}{\left(7 \times 10^{8} \mathrm{~m}\right)^{2}}=274 \mathrm{~ms}^{-1}=28 g_{\oplus} \\
\text { and the mean density of the Sun is } \quad\langle\rho\rangle=\frac{M}{V}=\frac{M}{\frac{4}{3} \pi R^{3}}=\frac{2 \times 10^{30} \mathrm{~kg}}{\frac{4}{3} \pi \cdot 3.4 \times 10^{26} \mathrm{~m}^{3}}=1410 \mathrm{~kg} \mathrm{~m}^{-3}=1.4 \mathrm{~g} \mathrm{~cm}{ }^{-3}
\end{array}
$$

so not much denser than water.

$$
\begin{aligned}
& \frac{d P}{d r}=-\frac{G M_{r} \rho}{r^{2}} \\
& M_{r}=\frac{4}{3} \pi(\rho) r^{3}
\end{aligned}
$$

(11.20)

Now assume that $\rho=\langle\rho\rangle$. Then
such that $\frac{d P}{d r}=-\frac{G M_{r} \rho}{r^{2}}=\frac{4 \pi G\langle\rho)^{2} r}{3}$
This can be used to estimate the pressure at $r=R / 2$ Separation of Variables gives

$$
\begin{aligned}
\int_{P}^{0} d P & =-\frac{4}{3} \pi G(\rho)^{2} \int_{R / 2}^{R} r d r \\
& =-\frac{4}{3} \pi G(\rho)^{2} \cdot \frac{1}{2}\left(R^{2}-\frac{R^{2}}{4}\right) \\
& =-\frac{1}{2} \pi G(\rho) R^{2}
\end{aligned}
$$

(11.25)
such that

$$
P=\frac{1}{2} \pi G\langle\rho\rangle R^{2}=10^{14} \mathrm{~Pa}
$$

From this the mean temperature can be obtained trom the equation of stat

$$
P=\frac{\langle\rho) k T}{\mu m_{\rho}} \Rightarrow T=\frac{\mu m_{\mathrm{P}} P}{k\langle\rho\rangle}
$$

pure ionized hydrogen gas, since we can ignore the electron mass, $\mu=0.5$

Inserting $\langle\rho\rangle$ and μ into Eq. (11.27) then gives

$$
T=\frac{\mu m_{\rho} P}{k\langle\rho\rangle}=\frac{0.61 \cdot 1.67 \times 10^{-27} \mathrm{~kg} \times 10^{44} \mathrm{~Pa}}{1.38 \times 10^{-23} \mathrm{~m}^{3} \mathrm{PaK}^{-1} \times 1400 \mathrm{~kg} \mathrm{~m}^{-3}}=5 \times 10^{6} \mathrm{~K}
$$

Standard solar model of Bahcall \& Serenelli (2005, ApJ 626, 530

Standard solar model of Bahcall \& Serenelli (2005, ApJ 626, 530)

Standard Solar Model, III

Stellar Structure

The first neutrino experiment in the Homestake mine (J. Davis et al., 1968ff.).
Based on reaction

$$
\nu_{\mathrm{e}}+{ }^{37} \mathrm{Cl} \longrightarrow{ }^{37} \mathrm{Ar}+\mathrm{e}^{-}
$$

Use Chlorine in large tetrachloroethylene tank (615 T), detect Ar with radiochemical methods.
Sensitive for electron neutrinos at energies above $\sim 0.8 \mathrm{MeV}$, which are rare.
Expected rate: $8.5 \pm 1.9 \mathrm{SNU}$
Detected rate: 2.6 ± 0.2 SNU
$1 \mathrm{SNU}: 10^{-37}$ captures target atom ${ }^{-1} \mathrm{~s}^{-1}$

Brookhaven National Laboratory
 Cleveland et al. (1998, ApJ 596, 505; a total of $875{ }^{37} \mathrm{Ar}$ atoms were detected in the experiment, 766 of which were solar)
Low flux from early Homestak runs was confirmed in the early 1990s by Kamiokande.

Solar Neutrino Problem: Solar neutrino flux is $\sim 1 / 3$ of predicted neutrino flux.
Most particle physicists believed that reason for the solar neutrino problem is that the standard solar model is wrong. They were wrong.
courtesy SNO

Acrylic vessel surrounded by photomultiplier tubes.

View through fisheye lens.
\qquad
Mesurement of the Rate of,$+d \rightarrow p+p+e^{-}$Interations Produce
Q. Amads ${ }^{2}$.

5

grzan

Solar Neutrinos, IX

Aharmin et al., 2005 (dashed line: prediction of standard solar model)
SNO (2001): $2 / 3$ of all ν_{e} produced in Sun change into ν_{τ} or ν_{μ} on their way from Sun to Earth: neutrino oscillations \Longrightarrow physics beyond the standard model of particle physics!

Stellar Structure

Evolution of the Sun

Now that we believe that the solar model is correct: evolution of the Sun

Principle:

1. Construct stellar model by solving equations of stellar structure for given radial abundances.
2. Evaluate change in elemental abundances as a function of radius from energy generation equations.
3. Change abundances appropriately for a time step Δt.
4. goto step 1

Stellar Structure

Bahcall, Pinsonneault \& Basu (2001, ApJ 555, 990)

Solar Evolution: Center

Bahcall, Pinsonneault \& Basu (2001, ApJ 555, 990; X_{c} is the central H fraction)

Main sequence: Hydrogen burning at the center.
Evolution timescale dominated by the nuclear timescale $=$ timescale needed to use up the fuel in the center of the star.
According to simulations, this is $\sim 10 \%$ of the available Hydrogen. Since 0.7% of $M_{\text {core }} c^{2}$ converted into He , the nuclear timescale is

$$
\begin{equation*}
t_{\mathrm{n}}=\frac{0.007 \cdot 0.1 M c^{2}}{L}=\frac{M / M_{\odot}}{L / L_{\odot}} \cdot 10^{10} \text { years } \tag{11.29}
\end{equation*}
$$

A second important timescale is the timescale the star would need to radiate its stored thermal energy: thermal timescale
Roughly given as

$$
\begin{equation*}
t_{\mathrm{t}}=\frac{0.5 G M^{2} / R}{L}=\frac{\left(M / M_{\odot}\right)^{2}}{\left(R / R_{\odot}\right)\left(L / L_{\odot}\right)} \cdot 2 \times 10^{7} \text { years } \tag{11.30}
\end{equation*}
$$

Stellar Structure

Stars: Main Sequence,

11-57

Structure on the Main Sequence: Simulations show existence of two regimes:
Iower main sequence : stars have structure similar to Sun:

- energy generation: pp-chain $\left(\epsilon \propto T^{5}\right)$
- inner radiative core
- convective hull
upper main sequence : for central temperatures of $18 \times 10^{6} \mathrm{~K}\left(1.5 M_{\odot}\right.$ stars $)$: pp-chain and CNO-cycle produce equal amounts of energy. Above that: CNO dominates.
- energy generation: CNO-cycle $\left(\epsilon \propto T^{17}\right)$
- inner convective core since energy generation from CNO cycle strongly peaked towards center.
- outer radiative hull

Solar Evolution: Post Main Sequence
H-burning stars on main sequence: hydrostatic equilibrium, inwards gravitational pressure balanced by outwards gas pressure
Since the gas pressure is $P=n k T$: energy source needed to heat gas (=fusion) End of H -burning: energy source ceases to work \Longrightarrow core has to collapse!

BUT:
collapse cannot continue indefinitely:
increased density \Longrightarrow quantum mechanical effects become important.

Different ways to write the equation of state of an ideal gas

```
in which the ideal gas equation can be writte.
The onel I prefer for astronomy is
where
    - P: Pressum
    - n: particle density (ie., number of particles per cubicmeter, unit m
    - }k=1.3.3066\times10.023) \mp@subsup{\textrm{K}}{}{-1}:\mathrm{ : Botzmann constant
*- tmperature (measured in Kevins)
This equation has the avvantage that it counts all particles individually (thus using
(n). If you know the mass of the gas particils, m}\mp@subsup{m}{\mathrm{ gas then another way of witing the}}{\mathrm{ ideal gas equation is }
ideal gas equation is
```



```
illustrating that for an ideal gas, P\propto\rho, where \rho is the mass density.
Another way to write the ideal gas equation is in terms of the total number of gas
        P=\frac{N}{V}kT}\LongleftrightarrowPV=NkT \Longleftrightarrow\frac{PV}{T}=N
T
generalyy thought a good idea, chemists preierers to work with moles. Per definition
seneraly thought a good idea, chemists preferer to work with moles. Per definition,
you want to work with moles, then the above equation becomes
        PV = = N
```

Quantum mechanics: One of the stranger phenomena in QM is the Pauli exclusion principle:

```
For particles such as electrons ("Fermions"), at least one of their
quantum numbers must be different.
```

Quantum numbers are, e.g.,

- position (x, y, z),
- momentum ($m v_{x}, m v_{y}, m v_{z}$),
- angular momentum,
- spin (s)

All of these numbers are "quantized", i.e., can only have discrete values (e.g., spin: $+1 / 2,-1 / 2$).

In a typical gas, this is not a problem ("phase space is (almost) empty"), but once it becomes dense \Longrightarrow exclusion principle kicks in.

QM interlude VIII 11-60

QM interlude, VII
Effect of high density on electron energy:

Energy of electrons at the same position in space
In degenerate electron gases, electrons
have much higher energies than in thermal
gas.

Interaction of electrons results in degeneracy pressure:

$$
P=\frac{\hbar^{2}}{m_{\mathrm{e}}} n_{\mathrm{e}}^{5 / 3} \propto \rho^{5 / 3}
$$

Note: The degeneracy pressure is independent of the temperature!

Once H is used up in center, H continues to burn in a shell around the He core. Low mass stars (\lesssim solar mass): Star reacts by expanding convective hull until it is almost fully convective: First motion in HRD horizontally towards the right, and then upwards to higher L : red giant stage.

Core continues to grow, gets compressed $\Longrightarrow \rho$ and T increase until core is degenerate.
Once central temperature $\sim 100 \times 10^{6} \mathrm{~K}$: Triple alpha process:

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \leftrightarrow{ }^{8} \mathrm{Be} \\
& { }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}
\end{aligned}
$$

Since ${ }^{8} \mathrm{Be}$ has a half life of only $2.6 \times 10^{-16} \mathrm{~s}$: effectively this can only work if 3α-particles collide.
\Longrightarrow High thermal conductivity of electrons \Longrightarrow core has uniform temperature $\Longrightarrow 3 \alpha$ onset is rapid He flash
Not seen on surface ("buffered" by convective envelope).

Stellar Structure

Evolution of the structure of a $1 M_{\odot}$ star to the Helium flash (Maeder \& Meynet, 1989).

