

Introduction

Together with theology, astronomy one of the oldest professions in the world.

Introduction

Together with theology, astronomy one of the oldest professions in the world.

So what?

Introduction

Together with theology, astronomy one of the oldest professions in the world.

So what?

Astronomical nomenclature is still strongly influenced by this tradition

⇒ appreciation of history of astronomy is required for understanding even today's astronomy (many terms used are based on this history).

Babylon

Babylonian astronomy: Earliest astronomy with influence on us: \sim 360 d year \implies sexagesimal system [360:60:60], 24h day, 12×30 d year,...

Enuma Elish myth (\sim 1100BC): Universe is place of battle between Earth and Sky, born from world parents.

Note similar myth in the Genesis...

Image: Mul.Apin cuneiform tablet (British Museum, BM 86378, 8 cm high), describes rising and setting of constellations through the babylonian calendar. Summarizes astronomical knowledge as of before \sim 690 BC.

Egyptian coffin lid showing two assistant astronomers, 2000...1500 BC; hieroglyphs list stars ("decans") whose rise defines the start of each hour of the night.

(Aveni, 1993, p. 42)

 \sim 2000 BC: 365 d calendar (12 \times 30 d plus 5 d extra), fi xed to Nile flood (heliacal rising of Sirius), star clocks.

heliacal rising: first appearance of star in eastern sky at dawn, after it has been hidden by the Sun.

Atlas Farnese, 2c A.D., Museo Archeologico Nazionale, Napoli

Early Greek astronomy: folk tale astronomy (Hesiod (730?–? BC), Works and Days). Constellations.
Thales (624–547 BC): Earth is flat, surrounded by water.

Anaxagoras (500–428 BC): Earth is flat, floats in nothingness, stars are far away, fi xed on sphere rotating around us. Eclipses: due to Earth's shadow.

Eudoxus (408–355 BC): Geocentric, planets affi xed to concentric crystalline spheres. First real model for planetary motions!

Aristarchus (310–230 BC): Determination of relative distance to Moon and Sun (factor 20).

Greek/Roman, II

Aristotle (384–322 BC, de caelo): Refi nement of Eudoxus model: add spheres to ensure smooth motion \implies Universe fi lled with crystalline spheres (nature abhors vacuum).

 \implies Central philosophy until \sim 1450AD!

Hipparchus (?? – \sim 127 BC): Refi nement of geocentric Aristotelian model into tool to make predictions.

History

Greek/Roman, III

(Aveni, 1993, p. 58)

Ptolemaeus (~140AD): *Syntaxis* (aka Almagest): Refi nement of Aristotelian theory into model useable for computations

 \implies Ptolemaic System.

2-7

Renaissance, I

Nicolaus Copernicus (1473–1543): Earth centred Ptolemaic system is too complicated, a Sun-centred system is more elegant.

History

2-8

Renaissance, II

vatione falsa manite, meno em conementiove allegabit ut magnitudore or bian multitudo tors metratur) orde pha leasure on house model : a fine caperites mine 1 deogramobilis morfe loons ad give mai 4 ----dente pre si Syderema mhari exylman motors berrefore afrenab. tue la com optimpt : in que toria com orbe Lamare training granties continen dysammes . Quinto lare Venue nono monte transtature

Nicolaus Copernicus (1473–1543): Earth centred Ptolemaic system is too complicated, a Sun-centred system is more elegant:

De revolutionibus orbium coelestium: "In no other way do we perceive the clear harmonious linkage between the motions of the planets and the sizes of their orbs."

(Gingerich, 1993, p. 165)

History

2 - 8

Renaissance, III

rations falsa manite, meno em conementore allegabit ut magnetudare or him multitude tors methatur) or to phe forghere on house model , a finne enquenter min PYLANN /6h Ideog mobilis morfe loons ad qui mai 4 Syderem where exy ne motors berrefore affrenabe it boll h et : m que terra rum orbe Lumari taung quercho continen dyemase . Quito los Verne none menfe Feder

(Gingerich, 1993, p. 165)

Nicolaus Copernicus (1473–1543): Earth centred Ptolemaic system is too complicated, a Sun-centred system is more elegant:

De revolutionibus orbium coelestium: "In no other way do we perceive the clear harmonious linkage between the motions of the planets and the sizes of their orbs."

Copernican principle: The Earth is not at the center of the universe.

History

Tycho Brahe (1546–1601): Visual planetary positions of highest precision reveal flaws in Ptolemaic positions.

Renaissance, V

Johannes Kepler (1571–1630): Planets orbit on ellipses around Sun, not on circles, laws of motion.

Galileo Galilei (1564–1642): Moons of Jupiter, moving around Jupiter (Kepler ⇒ similar to heliocentric model!)...

Newton

(Newton, 1730)

Isaac Newton (1642–1727): Newton's laws, physical cause for shape of orbits is gravitation (*De Philosophiae Naturalis Principia Mathematica*, 1687).

 \implies Begin of modern physics based astronomy.

History

- Aveni, A. F., 1993, Ancient Astronomers, (Washington, D.C.: Smithsonian Books)
- Gingerich, O., 1993, The Eye of Heaven Ptolemy, Copernicus, Kepler, (New York: American Institute of Physics)
- Newton, I., 1730, Opticks, Vol. 4th, (London: William Innys), reprint: Dover Publications, 1952

The Planets: Overview