

Introduction

We now move away from solar system \implies before we can continue with science, we need to understand

- where astronomical objects are \implies coordinate systems
- how astronomical measurements are made \implies telescopes

Horizon System, I

after Giese

Horizon System, II

Position on sky:

• Define position by giving direction to star.

after Giese

Horizon System, III

Position on sky:

- Define position by giving direction to star.
- Azimuth A: angle in horizontal S-W-N-E

after Giese

Horizon System, IV

Position on sky:

- Define position by giving direction to star.
- Azimuth A: angle in horizontal S-W-N-E
- Altitude *h*: angle from horizon towards zenith

after Giese

Horizon System, V

Position on sky:

- Define position by giving direction to star.
- Azimuth A: angle in horizontal S-W-N-E
- Altitude *h*: angle from horizon towards zenith
- Zenith distance z:

 $z={\rm 90^\circ}-h$

after Giese

Equatorial System, I

Problem: Earth rotates

 $\implies A \text{ and } h \text{ change with time} \\ \implies \text{need coordinates "fi xed" on celestial} \\ \text{sphere, similar to geographic} \\ \text{latitude, } \varphi, \text{ and longitude, } \lambda, \text{ on} \\ \text{Earth.} \end{aligned}$

© IBM

Equatorial System, II

after Giese

Equatorial System, III

after Giese

Equatorial System, V

Define coordinates with respect to celestial equator

8–7

after Giese

Equatorial System, VI

Define coordinates with respect to celestial equator

 Declination δ: angle from equator to star, measured in degrees (equivalent to latitude)

after Giese

Equatorial System, VII

Define coordinates with respect to celestial equator

8-7

• Declination δ : angle from equator to star, measured in degrees (equivalent to latitude) Equivalent to longitude more difficult: need a "Greenwich meridian". \implies Defined by crossing of ecliptic (apparent path of Sun on sky) with equator: "ascending node", "vernal equinox" (Frühlingspunkt)

(location of Sun on 21 March)

after Giese

Equatorial System, VIII

Define coordinates with respect to celestial equator

- Declination δ: angle from equator to star, measured in degrees (equivalent to latitude)
- Right ascension α: angle from vernal equinox to star, measured in easterly direction.

after Giese

Siderial Time, I

Define siderial time: 24 h correspond one rotation of the celestial sphere.

0 h siderial time = time when vernal equinox passes through meridian.

⇒ Local siderial time: Right ascension of stars passing through meridian.

Right Ascension is measured in hours, minutes, and seconds

1 h corresponds to 15°. α increases towards East.

Siderial Time, II

Note: Siderial time \neq common time

Common time: 24 h between culminations of the Sun (i.e., passes of Sun through meridian).

BUT

Sun moves on sky towards east

⇒ one "solar day" takes slightly longer than one rotation of the Earth

Angular speed of Sun: 360° degrees in 365.25 days, i.e., 0.9856° d⁻¹.

- \implies During 365.25 days the Earth rotates 364.25 times
- \implies Earth's rotation takes 24 h \times 364.25/365.25 = 23 h 56 minutes.

Precession and Nutation

There is one last problem, however:

Earth is \sim rotational ellipsoid, orbits of Sun and Moon are *not* in plane of equator

(Earth's axis has tilt of ${\sim}23.5^{\circ}$, moon's orbit tilted by 7° against ecliptic)

 \implies Sun and Moon excert torques onto Earth

Earth's rotational axis is not stable in space.

Two major effects:

Iunisolar precession: Earth's axis rotates around pole of ecliptic once every

25800 years (\sim 50'' per year).

Already discovered by Hipparcus in \sim 200 BC!

nutation: "Wobble" with \sim 18 year periodicity caused by short-term perturbations caused by Moon and Sun.

 \implies Need to state epoch for coordinates. Typically use 1950.0 or 2000.0.

Bayer's Uranometria (1603; University of Illinois collections) Aldebaran = α Tau: $\alpha_{J2000.0} = 04^{h}35^{m}55.2387^{s}$, $\delta_{J2000.0} = +16^{\circ}30'33.485''$ corresponding to $\alpha_{B1950.0} = 04^{h}33^{m}02.9^{s}$, $\delta_{B1950.0} = +16^{\circ}24'37.6''$

As we all know, light can be characterized by

Wavelength: λ , measured in m, mm, cm, nm, Å.

Frequency: ν , measured in Hz, MHz.

Energy: E, measured in J, erg, Rydbergs, eV, keV, MeV, GeV.

Temperature: T, measured in K.

These quantities are related:

$$\lambda \nu = c$$
 $E = h \nu$ $T = E/k$ (8.1)

where

$$c = 299792458 \,\mathrm{m \, s^{-1}}$$
 (8.2)

$$h = 6.6260693(11) \times 10^{-34} \,\mathrm{Js}$$
 (8.3)

$$k = 1.3806505(24) \times 10^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}$$
 (8.4)

Constants are 2002 CODATA values, http://physics.nist.gov/cuu/Constants/index.html uncertainty is 1σ in units of last digit shown.

Optical Telescopes

8 - 13

Earth's Atmosphere

Earth's atmosphere is opaque for all types of EM radiation except for optical light and radio.

⇒ Astronomy is today multi-wavelength astronomy, although optical studies are still the most important

Charles & Seward, Fig. 1.12

 \implies For time reasons only optical telescopes will be discussed.

Introduction

Scientifi c purposes of a telescope:

- 1. Collect light, lots of light, to show faint objects ("Light bucket")
- 2. Resolve small features

Instrumentation used...

- 1. to make images
 - \implies Imaging (with Charge Coupled Devices [CCDs], formerly also with fi Im)
- 2. to measure spectra
 - \implies Spectrographs
- 3. to measure stellar brightness
 - \implies Photometers (often CCDs, but there are also dedicated photometers for msec-resolution photometry)

Reflectors, I

To collect light, we have two possibilities:

1. Lenses: Refractors

Disadvantage: lens cannot be supported from the back \Longrightarrow limits max. diameter to \lesssim 2 m

 \implies not of interest for science anymore.

2. Mirrors: Reflectors

Mirrors can be supported, instrument of choice for today, with diameters up to 11 m

8–16

Reflectors, II

To form image: focus light with a parabolic mirror

Spherical mirrors show spherical aberration \implies *not* suited for astronomical telescopes, at least not without correction.

Newtonian Telescope

Newtonian telescope: reflector with parabolic mirror.

Common in cheaper telescopes.

Disadvantage: large size (\sim focal length)

Resolution, I

Wave nature of light results in interference pattern caused by diffraction on optical elements in telescope (mainly aperture).

GSU

Resolution, II

Diffraction pattern on telescope aperture: Airy pattern For a circular aperture with radius r:

$$I(\theta) \propto \pi^2 r^4 \left[\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+1} \left(\frac{m^n}{n!} \right)^2 \right]^2$$
(8.5)
$$\propto \frac{\pi^2 r^4}{m^2} \left(J_1(2m) \right)^2$$

where $m = \pi(r/\lambda) \sin \theta$ and where $J_1(x)$ s the Bessel function of the first kind of order unity.

 $I(\theta)$ has minima for m= 1.916, 3.508, 5.087,..., or

$$\sin \theta = \frac{1.916\lambda}{\pi r}, \frac{3.508\lambda}{\pi r}, \frac{5.087\lambda}{\pi r}, \dots$$
(8.6)

or for θ small (sin $\theta \sim \theta$) minima are found at:

$$\theta = \frac{1.220\lambda}{d}, \dots \tag{8.7}$$

where d: diameter.

Resolution, III

Resolution of telescope: ability to separate two (point-like) light sources

Rayleigh criterion for resolution: maximum of diffraction pattern of one source must fall into minimum of diffraction pattern of other source.

Therefore the diffraction limited resolution is

$$\alpha = \frac{1.220\lambda}{d} = \frac{12''}{D/1 \text{ cm}} \quad \text{for optical light} \tag{8.8}$$

Note: Rayleigh criterion is a criterion, not a law. Detailed object separability depends on ratio of intensities of two objects, in practice resolutions up to $3 \times$ smaller are acheivable.

Cassegrain telescope, after Wikipedia

Cassegrain telescope: reflector with "folded optical path"

- \implies Much shorter than Newtonian
- \implies Telescope of choice for modern instruments

Schmidt Telescope

Schmidt telescope: Uses spherical mirror for larger fi eld view, correction plate used to correct for spherical aberration.

Many amateur telescopes are combination of Schmidt telescope and Cassegrain telescope \implies Schmidt-Cassegrain telescopes.

Example: Building of the European Southern Observatory's Very Large Telescope

ESO

ESO PR Photo 44,99 (14 December 1999)

Photo: SAGEM

European Southern Observatory

Mirror cell supporting the mirror, actuators keep mirror in shape ("adaptive optics", correcting all possible deformations of the mirror).

VLT at Paranal

Active Optics, I

From Eq. (8.8), the resolution of a telescope of diameter d is

$$\alpha = \frac{1.220\lambda}{d} = \frac{12''}{D/1 \,\mathrm{cm}} \tag{8.8}$$

Problem: astronomical seeing

 \Longrightarrow turbulence in atmosphere smears pictures of stars to disks with $heta \gtrsim$ 0.3"

 \implies Increasing telescope diameter to \gtrsim 40 cm does *not* result in increase in resolution!

Solution to seeing problem: adaptive optics

... which only works in the IR so far, need to go to space for optical and UV

Scheme of an adaptive optics system (Lick observatory)

The AO system of Mt. Hopkins observatory, a 30 W laser (ⓒG. Furesz).

The AO system of Mt. Hopkins observatory, a 30 W laser (ⓒG. Furesz).

Active Optics, V

Picture of the galactic centre in the IR taken with the Gemini North

Gemini North/AURA

Active Optics, VI

Gemini North/AURA

Picture of the galactic centre in the IR taken with the Gemini North ... and corrected with adaptive optics

 \implies Resolution: diffraction limited!

 $\theta = 1.22 \operatorname{rad} \cdot \lambda/d \sim$ 70 mas (8.9)

(for d= 8 m, $\lambda=$ 2.2 μ m)

Extrasolar Planets

9–1