Introduction

We now move away from solar system \Longrightarrow before we can continue with science, we need to understand

- where astronomical objects are \Longrightarrow coordinate systems
- how astronomical measurements are made \Longrightarrow telescopes

Position on sky:
after Giese

Position on sky:

- Define position by giving direction to star.
after Giese

after Giese

Coordinates

Horizon System, IV

Position on sky:

- Define position by giving direction to star.
- Azimuth A : angle in horizontal S-W-N-E
- Altitude h : angle from horizon towards zenith
after Giese

Coordinates

Horizon System, V

Position on sky:

- Define position by giving direction to star.
- Azimuth A : angle in horizontal S-W-N-E
- Altitude h : angle from horizon towards zenith
- Zenith distance z :
$z=90^{\circ}-h$
after Giese

Coordinates

Equatorial System, I

Problem: Earth rotates
$\Longrightarrow A$ and h change with time
\Longrightarrow need coordinates "fi xed" on celestial sphere, similar to geographic latitude, φ, and longitude, λ, on Earth.
(C) IBM

Equatorial System, II

after Giese

Coordinates

Equatorial System, III

Let's look at our star again.

Rotation of Earth: Stars

 move over sky around celestial north pole.North pole has altitude φ above horizon.

Equatorial System, V

Define coordinates with respect to celestial equator
after Giese

Coordinates

Equatorial System, VI

Define coordinates with respect to celestial equator

- Declination δ : angle from equator to star, measured in degrees (equivalent to latitude)

Equatorial System, VII

Define coordinates with
respect to celestial equator

- Declination δ : angle from equator to star, measured in degrees (equivalent to latitude)
Equivalent to longitude more difficult: need a
"Greenwich meridian".
\Longrightarrow Defined by crossing of ecliptic (apparent path of Sun on sky) with equator: "ascending node", "vernal equinox" (Frühlingspunkt)
(location of Sun on 21 March)

Equatorial System, VIII

Define coordinates with respect to celestial equator

- Declination δ : angle from equator to star, measured in degrees (equivalent to latitude)
- Right ascension α : angle from vernal equinox to star, measured in easterly direction.

Siderial Time, I

Define siderial time: 24 h correspond one rotation of the celestial sphere.

0 h siderial time $=$ time when vernal equinox passes through meridian.
\Longrightarrow Local siderial time: Right ascension of stars passing through meridian.

Right Ascension is measured in hours, minutes, and seconds

1 h corresponds to 15°. α increases towards East.

Siderial Time, II

Note: Siderial time \neq common time

Common time: 24 h between culminations of the Sun (i.e., passes of Sun through meridian).

BUT

Sun moves on sky towards east
\Longrightarrow one "solar day" takes slightly longer than one rotation of the Earth
Angular speed of Sun: 360° degrees in 365.25 days, i.e., $0.9856^{\circ} \mathrm{d}^{-1}$.
\Longrightarrow During 365.25 days the Earth rotates 364.25 times
\Longrightarrow Earth's rotation takes $24 \mathrm{~h} \times 364.25 / 365.25=23 \mathrm{~h} 56$ minutes.

Precession and Nutation

There is one last problem, however:
Earth is \sim rotational ellipsoid, orbits of Sun and Moon are not in plane of equator
(Earth's axis has tilt of $\sim 23.5^{\circ}$, moon's orbit tilted by 7° against ecliptic)
\Longrightarrow Sun and Moon excert torques onto Earth

Earth's rotational axis is not stable in space.

Two major effects:
Iunisolar precession: Earth's axis rotates around pole of ecliptic once every 25800 years ($\sim 50^{\prime \prime}$ per year).
Already discovered by Hipparcus in $\sim 200 \mathrm{BC}$!
nutation: "Wobble" with ~ 18 year periodicity caused by short-term perturbations caused by Moon and Sun.
\Longrightarrow Need to state epoch for coordinates. Typically use 1950.0 or 2000.0.

Bayer's Uranometria (1603; University of Illinois collections)
Aldebaran $=\alpha$ Tau: $\alpha_{\mathrm{J} 2000.0}=04^{\mathrm{h}} 35^{\mathrm{m}} 55.2387^{\mathrm{s}}, \delta_{\mathrm{J} 2000.0}=+16^{\circ} 30^{\prime} 33.485^{\prime \prime}$ corresponding to $\alpha_{\mathrm{B} 1950.0}=04^{\mathrm{h}} 33^{\mathrm{m}} 02.9^{\mathrm{s}}, \delta_{\mathrm{B} 1950.0}=+16^{\circ} 24^{\prime} 37.6^{\prime \prime}$

THE ELECTROMAGNETIC SPECTRUM

Electromagnetic Spectrum, II

As we all know, light can be characterized by
Wavelength: λ, measured in $\mathrm{m}, \mathrm{mm}, \mathrm{cm}, \mathrm{nm}, \AA$.
Frequency: ν, measured in $\mathrm{Hz}, \mathrm{MHz}$.
Energy: E, measured in J, erg, Rydbergs, eV, keV, MeV, GeV.
Temperature: T, measured in K .
These quantities are related:

$$
\begin{equation*}
\lambda \nu=c \quad E=h \nu \quad T=E / k \tag{8.1}
\end{equation*}
$$

where

$$
\begin{align*}
c & =299792458 \mathrm{~m} \mathrm{~s}^{-1} \tag{8.2}\\
h & =6.6260693(11) \times 10^{-34} \mathrm{~J} \mathrm{~s} \tag{8.3}\\
k & =1.3806505(24) \times 10^{-23} \mathrm{JK}^{-1} \tag{8.4}
\end{align*}
$$

Constants are 2002 CODATA values, http://physics.nist.gov/cuu/Constants/index.html uncertainty is 1σ in units of last digit shown.

Earth's Atmosphere

Charles \& Seward, Fig. 1.12

Earth's atmosphere

 is opaque for all types of EM radiation except for optical light and radio.\Longrightarrow Astronomy is today multi-wavelength astronomy, although optical studies are still the most important
\Longrightarrow For time reasons only optical telescopes will be discussed.

Introduction

Scientifi c purposes of a telescope:

1. Collect light, lots of light, to show faint objects ("Light bucket")
2. Resolve small features

Instrumentation used. . .

1. to make images
\Longrightarrow Imaging (with Charge Coupled Devices [CCDs], formerly also with fi Im)
2. to measure spectra
\Longrightarrow Spectrographs
3. to measure stellar brightness
\Longrightarrow Photometers (often CCDs, but there are also dedicated photometers for msec-resolution photometry)

Reflectors, I

To collect light, we have two possibilities:

1. Lenses: Refractors

Disadvantage: lens cannot be supported from the back \Longrightarrow limits max. diameter to $\lesssim 2 \mathrm{~m}$
\Longrightarrow not of interest for science anymore.
2. Mirrors: Reflectors

Mirrors can be supported, instrument of choice for today, with diameters up to 11 m

Reflectors, II

To form image: focus light with a parabolic mirror Spherical mirrors show spherical aberration \Longrightarrow not suited for astronomical telescopes, at least not without correction.

Newtonian telescope: reflector with parabolic mirror.
Common in cheaper telescopes.
Disadvantage: large size (\sim focal length)

GSU

Wave nature of light results in interference pattern caused by diffraction on optical elements in telescope (mainly aperture).

Resolution, II

Diffraction pattern on telescope aperture: Airy pattern For a circular aperture with radius r :

$$
\begin{align*}
I(\theta) & \propto \pi^{2} r^{4}\left[\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}\left(\frac{m^{n}}{n!}\right)^{2}\right]^{2} \tag{8.5}\\
& \propto \frac{\pi^{2} r^{4}}{m^{2}}\left(J_{1}(2 m)\right)^{2}
\end{align*}
$$

where $m=\pi(r / \lambda) \sin \theta$ and where $J_{1}(x) \mathbf{s}$ the Bessel function of the first kind of order unity.
$I(\theta)$ has minima for $m=1.916,3.508,5.087, \ldots$, or

$$
\begin{equation*}
\sin \theta=\frac{1.916 \lambda}{\pi r}, \frac{3.508 \lambda}{\pi r}, \frac{5.087 \lambda}{\pi r}, \ldots \tag{8.6}
\end{equation*}
$$

or for θ small $(\sin \theta \sim \theta$) minima are found at:

$$
\begin{equation*}
\theta=\frac{1.220 \lambda}{d}, \ldots \tag{8.7}
\end{equation*}
$$

where d : diameter.

Resolution of telescope: ability to separate two (point-like) light sources

Rayleigh criterion for resolution: maximum of diffraction pattern of one source must fall into minimum of diffraction pattern of other source.

Therefore the diffraction limited resolution is

$$
\begin{equation*}
\alpha=\frac{1.220 \lambda}{d}=\frac{12^{\prime \prime}}{D / 1 \mathrm{~cm}} \quad \text { for optical light } \tag{8.8}
\end{equation*}
$$

Note: Rayleigh criterion is a criterion, not a law. Detailed object separability depends on ratio of intensities of two objects, in practice resolutions up to $3 \times$ smaller are acheivable.

Cassegrain Telescope

Cassegrain telescope, after Wikipedia
Cassegrain telescope: reflector with "folded optical path"
\Longrightarrow Much shorter than Newtonian
\Longrightarrow Telescope of choice for modern instruments

Schmidt Telescope

Schmidt telescope: Uses spherical mirror for larger fi eld view, correction plate used to correct for spherical aberration.
Many amateur telescopes are combination of Schmidt telescope and Cassegrain telescope \Longrightarrow
Schmidt-Cassegrain telescopes.

Optical Telescopes

Example: Building of the European Southern Observatory's Very Large Telescope

ESO

Mirror cell supporting the mirror, actuators keep mirror in shape ("adaptive optics", correcting all possible deformations of the mirror).

From Eq. (8.8), the resolution of a telescope of diameter d is

$$
\begin{equation*}
\alpha=\frac{1.220 \lambda}{d}=\frac{12^{\prime \prime}}{D / 1 \mathrm{~cm}} \tag{8.8}
\end{equation*}
$$

Problem: astronomical seeing
\Longrightarrow turbulence in atmosphere smears pictures of stars to disks with $\theta \gtrsim 0.3^{\prime \prime}$
\Longrightarrow Increasing telescope diameter to $\gtrsim 40 \mathrm{~cm}$ does not result in increase in resolution!

Solution to seeing problem: adaptive optics

... which only works in the IR so far, need to go to space for optical and UV

Scheme of an adaptive optics system (Lick observatory)

The AO system of Mt. Hopkins observatory, a 30 W laser (©)G. Furesz).

The AO system of Mt. Hopkins observatory, a 30 W laser (©)G. Furesz).

Picture of the galactic centre in the IR taken with the Gemini North

Picture of the galactic centre in the IR taken with the Gemini North
... and corrected with adaptive optics
\Longrightarrow Resolution: diffraction limited!
$\theta=1.22 \mathrm{rad} \cdot \lambda / d \sim 70 \mathrm{mas}$
(8.9)
(for $d=8 \mathrm{~m}, \lambda=2.2 \mu \mathrm{~m}$)
Gemini North/AURA

