The Cold ISM

1. Observational Examples
 2. History
 3. Molecular Spectroscopy
 4. H_{2} and CO
 5. Molecular Clouds
 6. Dust and Molecule Formation
 7. Starformation

Literature:
Rohlfs \& Wilson: Tools of Radio Astronomy, Springer Cowley: An Introduction to Cosmochemistry, CUP

M51, NOAO, T. Rector

Whirlpool Galaxy•M5I

NGC 4565, McLaughlin

Edge-On Galaxy NGC 4013

Star Forming Region RCW 108 in ARA

The Horsehead Nebula
(VLT KUEYEN + FORS 2)

ESO PR Photo 02a/02 (25 January 2002)
© European Southern Observatory

The Orion Nebula and Trapezium Cluster (VLT ANTU + ISAAC)

Reflection Nebula NGC 1999

General properties of the Galaxy:

Hubble Type	SBb
Diameter of disk	35 kpc
Thickness of bulge	6 kpc
Thickness of disk	1 kpc
Diameter of halo	$\gtrsim 50 \mathrm{kpc}$
Mass	$4 \times 10^{12} \mathrm{M}_{\odot}$
Mean Density	$0.1 \mathrm{M}_{\odot} \mathrm{pc}^{-3}$
Stellar mass fraction	90%
Gas mass fraction	10%
Dust	0.1%

This and the following lectures will look at the properties of the ISM.

General context: formation of stars.

The ISM of the Milky Way consists of the following phases

| Name Typen
 $\mathrm{~cm}^{-3}$ | T
 K | Filling Factor
 Vol- $\%$ | Mass
 $\%$ | Comments |
| :--- | :---: | :--- | :---: | :---: | :---: | :--- |

HIM: Hot Ionized Medium, WIM: Warm Ionized Medium, WNM: Warm Neutral
Medium, CNM: Cool Neutral Medium, MC: Molecular Clouds
courtesy J. Bally

- Secchi, 1878: First notice of molecular features in stellar spectra (class III and IV; no explanation)

Today known as $\mathrm{TiO}, \mathrm{C}_{2}$, and CN bands

- 1930s: Molecular lines in spectra of planetary atmospheres and comets as well as low temperature stars
- 1941: Interstellar absorption lines due to CN, CH , and CH^{+}in optical spectrum of ζ Oph
- Weinreb et al, 1963: Radio absorption lines at $\lambda=18 \mathrm{~cm}$ from OH towards SNR Cas A (not associated with Cas A, but with foreground clouds). Discovery of masers (=non-LTE!)
- Cheung et al., 1968: First multi-atom molecules: NH_{3} and $\mathrm{H}_{2} \mathrm{O}(\lambda=1.35 \mathrm{~cm})$.
- Snyder et al., 1969: Formaldehyde ($\mathrm{H}_{2} \mathrm{CO}$).
- Today (2002 April 11): 123 different molecules known

Simplest case: diatomic molecule Hamiltonian: due to motion of nuclei and electrons.
Assume molecular size $a(\sim 1 \AA)$. Heisenberg:

$$
\begin{equation*}
\Delta p \Delta q \geq \hbar \tag{10.1}
\end{equation*}
$$

such that typical energy spacing

$$
\begin{equation*}
\Delta E \sim \frac{\Delta p^{2}}{2 m} \sim \frac{\hbar^{2}}{2 m a} \tag{10.2}
\end{equation*}
$$

since $\Delta q \sim a$.
For electrons: $\Delta E \sim 1 \mathrm{eV}\left(\widehat{=} 10^{4} \mathrm{~K}\right)$, for nuclei: $\Delta E \sim 0.001 \mathrm{eV}$ ($=10 \mathrm{~K}$)
\Longrightarrow To first order, kinetic energy of nuclei can be ignored.
In other words: electrons move much faster than nuclei \Longrightarrow can make assumption of quasi-stationarity.

QM: Computation in "Born-Oppenheimer approximation", i.e., factorize wave-function $\Psi=\Psi_{\mathrm{e}} \Psi_{\text {nucl }}$ and compute Ψ_{e} using the assumption that the nuclei are fixed.

Transitions in molecule due to three different categories:

- electronic transitions between different levels, typical energies: $\sim \mathrm{eV} \Longrightarrow$ visual or UV
- vibrational transitions due to oscillation of nuclei, typical energies of 0.1 to $0.01 \mathrm{eV} \Longrightarrow$ infrared
- rotational transitions due to rotation of nuclei around common, $10^{-3} \mathrm{eV}$ axis $\Longrightarrow \mathrm{cm}$ and mm wavebands

Will now look at these in (some) detail.

O_{2}

Basic building-block: electronic states.
Generally, in molecules, distinction between "state", "level", and "term" from atomic spectra is not made!

Diatomic molecules: classify electron angular momentum along internuclear axis.
Wavefunction in this case will have φ-symmetry, and $\Psi \propto \exp (i m \varphi)$, functions for other two coordinates depend on m^{2} only \Longrightarrow electronic states independent of sign of m. Therefore use

$$
\begin{equation*}
\lambda=|m|, \quad \lambda=0,1,2, \ldots \tag{10.3}
\end{equation*}
$$

to describe wave functions. Electronic states with $\lambda=0,1,2,3, \ldots$ are called $\sigma, \pi, \delta, \phi$.

Electronic States, II

State of molecule: sum of orbital angular momenta, L. Projection of L onto axis gives M_{L}, characterized by quantum number Λ.
$\Lambda=0,1,2,3, \ldots$ are called $\Sigma, \Pi, \Delta, \Phi, \ldots$,

Finally, multiplicity: Total electronic angular momentum (quantum number S). Write as in atoms, ${ }^{2 S+1} \Sigma$, such as ${ }^{2} \Sigma,{ }^{4} \Pi$, etc.

Sometimes, sum of Λ and Σ appended to term symbol.
For example, for ${ }^{4} \Pi$:
$\Lambda=1$ and
$\Sigma=-3 / 2,-1 / 2,1 / 2,3 / 2$,
such that

$$
{ }^{4} \Pi_{5 / 2},{ }^{4} \Pi_{3 / 2},{ }^{4} \Pi_{1 / 2},{ }^{4} \Pi_{-1 / 2}
$$

Individual states are sorted in a weird way. X is ground state (sometimes addtl. g appended), higher states are A, B, C, other terms a, b, \ldots (e.g., ground state of CN is $X^{2} \Pi$, ground state of H_{2} is $X^{1} \Sigma_{g}$).

Electronic States, III

Energy of electronic state:
In molecular spectroscopy, use wavenumber $\tilde{\nu}$ instead of Energy:

$$
\begin{equation*}
E=h \nu=\frac{h c}{\lambda}=h c \tilde{\nu} \tag{10.4}
\end{equation*}
$$

Energy expressed in terms of wavenumber is called a term value (not to be confused with "terms" of atomic physics!).

The electronic term value is

$$
\begin{equation*}
T_{e}=T_{0}+A \cdot \Lambda \cdot \Sigma \tag{10.5}
\end{equation*}
$$

where Σ is projection of S on the internuclear axis, and A, T_{0} are constants.
\Longrightarrow Spin has large influence on energy!
Typical energies on order of several eV.
Sign of A determines order of energies.
$A>0 \Longrightarrow$ Regular multiplet
$A<0 \Longrightarrow$ Inverted multiplet
append r or i to designation of state

IAAT

Molecular Spectroscopy

Distance r

Internuclear potential $P(r)$ similar to Morse potential,

$$
\begin{align*}
P(r) & =D_{\mathrm{e}}\left(1-\exp \left(-a\left(r-r_{\mathrm{e}}\right)\right)\right)^{2} \tag{10.6}\\
& \sim a^{2} D_{\mathrm{e}}\left(r-r_{\mathrm{e}}\right)^{2} \tag{10.7}
\end{align*}
$$

where $D_{\text {e }}$ potential energy at large distances (=dissociation energy), r_{e} minimum of potential energy (distance of nuclei). Schrödinger equation gives vibrational energies

$$
\begin{equation*}
E(v)=h \nu_{\mathrm{osc}}(v+1 / 2), \quad \text { with } \quad \nu_{\mathrm{osc}}=\frac{a}{2 \pi} \sqrt{\frac{2 D_{\mathrm{e}}}{m}} \tag{10.8}
\end{equation*}
$$

where $v=0,1,2, \ldots$ is called the vibrational quantum number.

Kinetic energy of rotation:

$$
\begin{equation*}
H_{\mathrm{rot}}=\frac{1}{2} \Theta \omega^{2}=\frac{\mathbf{J}^{2}}{2 \Theta} \tag{10.9}
\end{equation*}
$$

where J is angular momentum and where Θ is the moment of inertia.
For a diatomic molecule with nuclei A and B,

$$
\begin{equation*}
\Theta=m_{A} r_{A}^{2}+m_{B} r_{B}^{2}=: m r_{e}^{2} \tag{10.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{r}_{e}=\mathbf{r}_{A}-\mathbf{r}_{B} \tag{10.11}
\end{equation*}
$$

and where the reduced mass is

$$
\begin{equation*}
m=\frac{m_{A} m_{B}}{m_{A}+m_{B}} \tag{10.12}
\end{equation*}
$$

Finally, the angular momentum is

$$
\begin{equation*}
\mathbf{J}=\Theta \omega \tag{10.13}
\end{equation*}
$$

Normally, the moment of inertia is a tensor \Longrightarrow use value appropriate for direction of ω...

Solution of the Schrödinger equation for the angular momentum gives

$$
\begin{equation*}
E_{\text {rot }}(J)=\frac{\hbar^{2}}{2 \Theta} J(J+1) \tag{10.14}
\end{equation*}
$$

where J is quantum number of angular momentum, and where

$$
J=0,1,2, \ldots
$$

$\Delta_{24 B}$
Or in units of wavenumber:

$$
F(J)=\frac{E_{\mathrm{rot}}}{h c}
$$

12B
$J=3$
6B $\quad \mathrm{J}=2$
$=\frac{h}{8 \pi^{2} \Theta c} J(J+1)$
$=B \cdot J(J+1)$
(10.15)

Actual molecules have centrifugal stretching due to rotation.
To first order, gives energy correction, therefore for rotational terms in general:

$$
\begin{equation*}
F(J)=B J(J+1)-D[J(J+1)]^{2} \tag{10.16}
\end{equation*}
$$

with some constant $D \ll B$.

Order of magnitude of B : Typical separation of nuclei in molecule $a \sim 1 \AA \sim 10^{-8} \mathrm{~cm}$. For CO, reduced mass is about 10 amu , or $1.6 \times 10^{-23} \mathrm{~g}$. Therefore

$$
\Theta=1.6 \times 10^{-23} \cdot 10^{-16}=1.6 \times 10^{-39} \mathrm{~g} \mathrm{~cm}^{2}
$$

such that

$$
B=1.75 \mathrm{~cm}^{-1}
$$

Wavenumber of transition between $J=1$ and $J=0$ therefore:

$$
\tilde{\nu}_{J=1 \rightarrow J=0}=3 B-1 B=2 B=3.5 \mathrm{~cm}^{-1}
$$

corresponding to $\lambda=3 \mathrm{~mm}$, or $\nu=100 \mathrm{GHz}$.

In reality, rotators vibrate \Longrightarrow rotations and vibrations are coupled \Longrightarrow All constants are not constants. . .

Rotations:

$$
\begin{equation*}
F(J)=J(J+1) B_{v}-(J(J+1))^{2} D_{v} \tag{10.17}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{v}=B-\alpha_{e}(v+1 / 2) \tag{10.18}
\end{equation*}
$$

with some correcting constant α_{e}. In principle similar equation for D_{v}, with constant β_{e}, but usually setting $D_{v}=D$ is sufficient.

Vibrations:

$$
\begin{aligned}
& G(v)=\omega_{e}(v+1 / 2)-\omega_{e} x_{e}(v+1 / 2)^{2}+ \\
&+\omega_{e} y_{e}(v+1 / 2)^{3}+\ldots \text { (10.19) }
\end{aligned}
$$

where $\omega_{e}, \omega_{e} x_{e}$, etc. are constants.

Typically, all constants ($\alpha_{e}, D_{v}, \omega_{e}, \ldots$) are tabulated (determined from experiments)

IAAT

Table 11.1. Selected Constants for Diatomic Molecules. (Units are cm^{-1} except as indicated.)

Selection Rules

Total energy of a molecular level of a diatomic molecule:

$$
\begin{equation*}
T(v, J)=T_{e}+G(v)+F(J) \tag{10.20}
\end{equation*}
$$

Compute line wavenumbers from differences of levels obeying selection rules.
Most important for spectroscopy: rotational-vibrational transitions.
For these the following selection rules apply:

- Selection rule for J :

$$
\begin{aligned}
& \Delta J=0, \pm 1, \\
& J=0 \nrightarrow J=0 .
\end{aligned}
$$

- Selection rule for v :
$\Delta v \neq 0$ (only true for pure harmonic oscillator)
Also need fi nite dipole moment for these dipole-transitions to be possible
Note: homonuclear molecules have no dipole moment \Longrightarrow only quadrupole lines possible ($\Delta J= \pm 2$).

Most common:
$J^{\prime}=J^{\prime \prime}+1$: R-Branch
$J^{\prime}=J^{\prime \prime} \quad:$ Q-Branch
$J^{\prime}=J^{\prime \prime}-1$: P-Branch
Note: $J=0 \nrightarrow J=0$ means that there is no Q-branch for most ground states.

Because of high abundances: most molecular gas is H_{2}.
For review of properties of H_{2}, see Shull \& Beckwith, 1982, Ann.
Rev. Astron. Astrophys. 20, 163
H_{2} is homonuclear \Longrightarrow no permanent dipole moment \Longrightarrow no rotational dipole transitions. Only transitions observable are vibrational or electronic.
Vibrational: $\lambda \sim 6 \mu \mathrm{~m}$, in the infrared.
Problem: Dust extinction in IR severe

Once H is molecular, it is very difficult to see.

Alternative: Observation of electronic transitions of H_{2} in absorption against hot UV-Stars ("Werner-bands").

Note that excitation of transitions requires lots of energy which cannot be produced otherwise.

Unfortunately, no relation to K.W. :-)

Richter et al., 1998, A\&A
ORFEUS: Discovery of H_{2} bands in absorption in direction towards SMC $\Longrightarrow \mathrm{H}_{2}$ also present in diffuse ISM, not only in clouds (agrees with Copernicus measurements in milky way; Spitzer, 1974).

Spitzer \& Jenkins, 1975, ARAA 13, 133

Observation of $J=1 \longrightarrow J=0$ transition can be used to deduce temperature:
Boltzmann gives:

$$
\frac{N(J)}{N(0)}=(2 J+1) \exp \left(-J(J+1) \frac{85 \mathrm{~K}}{T}\right)
$$

Typical temperatures for the diffuse medium are between 45 K and 130 K .
For low-density clouds, $N(1) / N(0)$ might be non-thermal, because molecules have tendency to be in high- J states when relaxing after photon excitation, thermal ratio only good for $n<10^{18} \mathrm{~cm}^{-3}$.

Binney\&Merrifield, Fig. 8.5
Compute total Hydrogen-density obtained from

$$
\begin{equation*}
N\left(\mathrm{H}_{\mathrm{tot}}\right)=N(\mathrm{HI})+2 N\left(\mathrm{H}_{2}\right) \tag{10.22}
\end{equation*}
$$

and molecular fraction

$$
\begin{equation*}
f_{\mathrm{H}_{2}}=\frac{2 N\left(\mathrm{H}_{2}\right)}{N\left(\mathrm{H}_{\mathrm{tot}}\right)} \tag{10.23}
\end{equation*}
$$

For $N\left(\mathrm{H}_{\text {tot }}\right)<2 \times 10^{18} \mathrm{~cm}^{-2}$, i.e., low columns, H is atomic, above that molecular \Longrightarrow More molecules in denser parts of ISM.

Carbon Monoxide

Better than observing H_{2} directly is to deduce its presence indirectly using other molecules with rotational positions \Longrightarrow use heteronuclear molecules, e.g., CO, CS, HCN.

Candidate Number 1: CO, rotational transitions at $1.3 \mathrm{~mm}(J=2 \rightarrow J=1)$ and 2.6 mm $(J=1 \rightarrow J=0)$.

Notation: $\mathrm{CO}(2-1)$ and $\mathrm{CO}(1-0)$
CO is less abundant than H_{2} (see later), but A-coefficients of lines very large; $\tau=1$ reached at CO-column $\sim 6 \times 10^{15} \mathrm{~cm}^{-2}$, corresponding to $N_{\mathrm{H}} \sim 8 \times 10^{19} \mathrm{~cm}^{-2}$
\Longrightarrow Cannot use "standard" CO to look into thick clouds.
\Longrightarrow Use some tricks: Isotope effects!

CO occurs in several forms:

- ${ }^{12} \mathrm{C}^{16} \mathrm{O}\left(={ }^{12} \mathrm{CO}\right)$
- ${ }^{13} \mathrm{C}^{16} \mathrm{O}\left(={ }^{13} \mathrm{CO}\right)$
- ${ }^{12} \mathrm{C}^{18} \mathrm{O}\left(=\mathrm{C}^{18} \mathrm{O}\right)$
because of slightly different reduced masses, wavelength of transitions slightly different \Longrightarrow can separate emission lines from these species.

Relative abundances:
${ }^{12} \mathrm{CO}:{ }^{13} \mathrm{CO}: \mathrm{C}^{18} \mathrm{O}=500: 65: 1$

By using ${ }^{13} \mathrm{CO}$ or $\mathrm{C}^{18} \mathrm{O}$, can look deeper in molecular cloud.

Column from Lines

after Cowley, Fig. 14.5
To measure mass from emission line, determine number of emitting atoms, N.
Observed intensity not trivially $\propto N$ because of self-absorption.
Excess in line:

$$
\begin{equation*}
r_{\nu}=\frac{I_{\nu}-I_{0}}{I_{0}}=\frac{S_{\nu}-I_{0}}{S_{\nu}}\left(1-\exp \left(-\frac{\tau_{\nu}}{\mu}\right)\right) \tag{10.24}
\end{equation*}
$$

where τ : optical depth, I_{0} : background intens., $\mu=\cos \theta$ Inserting τ in terms of transition probability $f_{n m}$ and expanding the exponential gives for the equivalent width

$$
\begin{equation*}
W_{\nu}=\int r_{\nu} \mathrm{d} \nu \sim \frac{\pi e^{2}}{m c} r_{0} f_{n m} \frac{N_{n}}{\mu} \tag{10.25}
\end{equation*}
$$

where $r_{0}=\left(S_{\nu}-I_{0}\right) / S_{\nu}$.

For a case study: use NGC 2024 (flame nebula, bright star is Alnitak [[Ori]; close to horsehqat AT
Molecules: Carbon Monoxide

(courtesy Craia Kulesa)
$\mid A A T$
Molecules: Carbon Monoxide

NGC 2024, IV

(Phillips et al., 1979, Fig. 3b)
Intensity given as antenna temperature, $I=2 k T \nu^{2} / c^{2}$
Right-ascension strip maps over NGC 2024: peak intensities ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}$, and $\mathrm{C}^{18} \mathrm{O}$ scale as $5: 2: 1 \Longrightarrow$ cloud is optically thick (lines should scale as the abundances, and they don't). Last step to get $N_{\text {co }}$: use Boltzmann if (and only if) LTE is appropriate...

From CO to H

Once $N(\mathrm{CO})$ has been determined: Infer H_{2} column using some "standard" ratio. Typical assumptions:

$$
\begin{equation*}
\frac{N\left({ }^{13} \mathrm{CO}\right)}{N\left(\mathrm{H}_{2}\right)} \sim 0.5 \ldots 2.0 \times 10^{-6} \tag{10.26}
\end{equation*}
$$

Ratio determined from UV-data on hydrogen and CO measurements at cloud edges (low τ).

Caveats:

- CO usually not in LTE for higher J
- $n\left(\mathrm{H}_{2}\right) / n\left({ }^{12} \mathrm{C}\right), n\left({ }^{12} \mathrm{C}\right) / n\left({ }^{13} \mathrm{C}\right)$ affected by astration (passage of ISM through stars), \Longrightarrow
$n\left({ }^{12} \mathrm{C}\right) / n\left({ }^{13} \mathrm{C}\right)=20$ at $\mathrm{GC}, 90$ at large Galactic radii,
- Clumpy clouds? Shadowing? (fi nite beamsize of telescope...),
- Isotope ratios very different between different cloud complexes
-...
H_{2} mass only determinable to factor of a few!

IAAT

Molecules: Carbon Monoxide

Dame et al., CfA; Columbia 1.2 m telescope

CO distribution in galactic coordinates: concentration of clouds on plane; high speed at center not yet understood.

(Solomon et al., 1987, Fig. 1)
Solomon et al. (1987): $2.6 \mathrm{~mm}{ }^{12} \mathrm{CO}$ survey of >200 molecular clouds within solar circle.

Relationship between velocity dispersion, σ_{v}, (from line width) and cloud size, S :

$$
\begin{equation*}
\sigma_{v}=(1 \pm 0.1) \mathrm{km} \mathrm{~s}^{-1}\left(\frac{S}{\mathrm{pc}}\right) \tag{10.27}
\end{equation*}
$$

Cloud Properties, III

Median linewidth in Solomon survey:

$$
\begin{equation*}
\sigma_{v} \sim 3 \mathrm{~km} \mathrm{~s}^{-1} \tag{10.28}
\end{equation*}
$$

Compare to sound-speed, assuming $k T \sim 30 \mathrm{~K}$

$$
\begin{equation*}
c_{\mathrm{s}} \sim \sqrt{\frac{k T}{m_{\mathrm{p}}}} \sim 0.5 \mathrm{~km} \mathrm{~s}^{-1} \sqrt{\frac{T}{30 \mathrm{~K}}} \tag{10.29}
\end{equation*}
$$

σ_{v} dominated by turbulent velocity within clouds, not by sound speed...

Turbulent pressure $P \sim n m \sigma_{v}^{2}$, with $n \gtrsim 10^{2} \mathrm{~cm}^{-3}$, much higher than confi ning pressure in intra-cloud medium (there: $\left.n \sim 1 \mathrm{~cm}^{-3}, c_{s} \sim 10 \mathrm{~km} \mathrm{~s}^{-1}\right) \Longrightarrow$ clouds confi ned by gravity!
Use virial theorem to get mass:

$$
\begin{equation*}
M \sim \text { const. } \frac{\sigma_{v}^{2} S}{G} \tag{10.30}
\end{equation*}
$$

where const. ~ 8.7, depending on geometry.

Cloud Properties, IV

(Solomon \& Rivolo, 1989, Fig. 1)
Mass spectrum of molecular clouds is roughly $\frac{\mathrm{d} N}{\mathrm{~d} M} \propto M^{-1.7}$
for $2000 \mathrm{M}_{\odot}<M<40000 \mathrm{M}_{\odot}$.
At low masses selection effect (biasing).
Integrating over mass distribution shows
Most of the Galaxy's molecular gas is in the most massive clouds

List of all interstellar and circumstellar molecules observed (http://www.cv.nrao.edu/~awootten/allmols.html; as of 2002 April 11)

Molecules with Two Atoms: AIF, $\mathrm{AlCl}, \mathrm{C}_{2}, \mathrm{CH}, \mathrm{CH}^{+}, \mathrm{CN}, \mathrm{CO}, \mathrm{CO}^{+}$, CP, CS, CSi, $\mathrm{HCl}, \mathrm{H}_{2}, \mathrm{KCl}, \mathrm{NH}, \mathrm{NO}, \mathrm{NS}, \mathrm{NaCl}, \mathrm{OH}, \mathrm{PN}, \mathrm{SO}, \mathrm{SO}^{+}$, $\mathrm{SiN}, \mathrm{SiO}, \mathrm{SiS}, \mathrm{HF}, \mathrm{SH}, \mathrm{FeO}(?)$
Molecules with Three Atoms: $\mathrm{C}_{3}, \mathrm{C}_{2} \mathrm{H}, \mathrm{C}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{~S}, \mathrm{CH}_{2}, \mathrm{HCN}, \mathrm{HCO}$, $\mathrm{HCO}^{+}, \mathrm{HCS}^{+}, \mathrm{HOC}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HNC}, \mathrm{HNO}, \mathrm{MgCN}, \mathrm{MgNC}, \mathrm{N}_{2} \mathrm{H}^{+}$, $\mathrm{N}_{2} \mathrm{O}, \mathrm{NaCN}, \mathrm{OCS}, \mathrm{SO}_{2}, \mathrm{c}-\mathrm{SiC}_{2}, \mathrm{CO}_{2}, \mathrm{NH}_{2}, \mathrm{H}_{3}^{+}$, AINC

Molecules with Four Atoms: $\mathrm{c}_{-} \mathrm{C}_{3} \mathrm{H}, \mathrm{I}-\mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{3} \mathrm{~N}, \mathrm{C}_{3} \mathrm{O}, \mathrm{C}_{3} \mathrm{~S}, \mathrm{C}_{2} \mathrm{H}_{2}$, $\mathrm{CH}_{2} \mathrm{D}^{+}$?, $\mathrm{HCCN}, \mathrm{HCNH}+\mathrm{HNCO}, \mathrm{HNCS}, \mathrm{HOCO}+, \mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{CN}$, $\mathrm{H}_{2} \mathrm{CS}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{NH}_{3}, \mathrm{SiC}_{3}$

Molecules with Five Atoms: $\mathrm{C}_{5}, \mathrm{C}_{4} \mathrm{H}, \mathrm{C}_{4} \mathrm{Si}, \mathrm{I}-\mathrm{C}_{3} \mathrm{H}_{2}, \mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{CN}$, $\mathrm{CH}_{4}, \mathrm{HC}_{3} \mathrm{~N}, \mathrm{HC}_{2} \mathrm{NC}, \mathrm{HCOOH}, \mathrm{H}_{2} \mathrm{CHN}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{NCN}, \mathrm{HNC}_{3}, \mathrm{SiH}_{4}$, $\mathrm{H}_{2} \mathrm{COH}^{+}$

Molecules with Six Atoms: $\mathrm{C}_{5} \mathrm{H}, \mathrm{C}_{5} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{NC}, \mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{SH}, \mathrm{HC}_{3} \mathrm{NH}^{+}, \mathrm{HC}_{2} \mathrm{CHO}, \mathrm{HCONH}_{2}, \mathrm{I}-\mathrm{H}_{2} \mathrm{C}_{4}, \mathrm{C}_{5} \mathrm{~N}$

Molecules with Seven Atoms: $\mathrm{C} 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCN}, \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}, \mathrm{HC}_{5} \mathrm{~N}$, $\mathrm{HCOCH}_{3}, \mathrm{NH}_{2} \mathrm{CH}_{3},{\mathrm{c}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}}$

Molecules with Eight Atoms: $\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{~N}, \mathrm{HCOOCH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C} 7 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C} 6, \mathrm{CH}_{2} \mathrm{OHCHO}$

Molecules with Nine Atoms: $\mathrm{CH}_{3} \mathrm{C}_{4} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{HC} 7 \mathrm{~N}, \mathrm{C} 8 \mathrm{H}$

Molecules with Ten or More Atoms: $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{~N}$?, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$?, $\mathrm{HC}_{9} \mathrm{~N}, \mathrm{HC}_{11} \mathrm{~N}$

IAAT

Formation of molecules in dense media (e.g.,
Earth's atmosphere) is no problem. This is very different from the rest of the universe!

Assume two-body collision of two (neutral) atoms: typical interaction timescale $10^{-13} \mathrm{~s}$ (1 vibration timescale).

To form molecule, need to get rid of excess energy!

Problem: Typical time for radiative relaxation given by A-coefficient ($\sim 10^{8} \mathrm{~s}^{-1}$)
\Longrightarrow Typical collisional time-scale too low \Longrightarrow cannot form molecules!

On Earth, excess energy carried away by triple-collisions, these are too rare in the ISM...

Further complication: UV-dissociation of molecules.

Solution: "nonstandard chemistry"

- Atom-ion reactions
- dust as catalyst

Atom-ion reactions are, e.g.,

$$
\begin{equation*}
\mathrm{O}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{OH}^{+}+\mathrm{H} \tag{10.32}
\end{equation*}
$$

These reactions are very effective.
Reason: ion polarizes molecule.
Langevin theory:
Assume charge q_{1} approaches molecule; represent induced dipole-moment by charge q_{2} separated by distance p. Then

$$
\begin{equation*}
q_{2} p=\alpha E \tag{10.33}
\end{equation*}
$$

where E electric fi eld, α polarizability.
Since $E=q_{1} / r^{2}$, this means

$$
\begin{equation*}
p=\frac{\alpha q_{1}}{q_{2} r^{2}} \tag{10.34}
\end{equation*}
$$

and the attractive force is

$$
\begin{equation*}
F_{r}=-\frac{2 q_{1} q_{2} p}{r^{3}}=-\frac{2 q_{1}^{2} \alpha}{r^{5}} \tag{10.35}
\end{equation*}
$$

The Solution, II

Thus potential energy is

$$
V(r)=\int_{r}^{\infty} F_{r} \mathrm{~d} r=\frac{q_{1}^{2} \alpha}{2 r^{4}}
$$

(10.36)

Motion in such a potential allows spiral-in (F can not always be balanced by centrifugal force).
This happens for impact parameters $b<b_{0}$ where

$$
\begin{equation*}
b_{0}=q_{1}\left(\frac{4 \alpha}{\mu v^{2}}\right)^{1 / 4} \tag{10.37}
\end{equation*}
$$

where μ reduced mass.
\Longrightarrow Langevin cross section

Since collision frequency $\propto\langle Q v\rangle$, collision frequency independent of energy
Not really true in full theory, but dependence small for regime of astrophysical interest.

IAAT

The Solution, III

Henning, 1981

Typical theory of molecular formation: reaction networks with ~ 1000 and more different reactions.

One unavoidable fact: cannot produce H_{2} in gas phase \Longrightarrow must occur on surface of dust grains.

Why?

Two-body recombination not possible because no dipole moment \Longrightarrow radiative relaxation would go via quadrupole terms, which is very slow.

Therefore: general picture:
adsorption of H on grain surface (e.g., ice,
silicate) \Longrightarrow proton will thermally "hop" over surface (tunnel through lattice structure,...) \Longrightarrow Two H -atoms meet \Longrightarrow formation of H_{2}

Detailed theory requires knowledge about grains.

Depletion of Elements

Abundances in direction to ζ Oph (Federman et al., 1993)
Evidence for existence of solid state material in universe comes mainly from two observations:

1. Depletion of elements in ISM gas phase wrt. solar abundances
2. Reddening of stars

Extinction, I

Extinction = dimming of starlight by dust How is this measured?

Assume two stars, 1,2 , at distances d_{1}, d_{2}, with same physical spectral shape, $F(\lambda)$. Medium to star 2 has optical depth $\tau(\lambda)$. Observed spectral fluxes are

$$
\begin{equation*}
F_{1}(\lambda)=\frac{F(\lambda)}{d_{1}^{2}} \quad \text { and } \quad F_{2}(\lambda)=\frac{F(\lambda)}{d_{2}^{2}} \mathrm{e}^{-\tau(\lambda)} \tag{10.39}
\end{equation*}
$$

Compare fluxes at wavelength λ_{1} :

$$
\begin{equation*}
\frac{F_{1}\left(\lambda_{1}\right)}{F_{2}\left(\lambda_{1}\right)}=\frac{F\left(\lambda_{1}\right) / d_{1}^{2}}{F\left(\lambda_{2}\right) / d_{2}^{2}} \mathrm{e}^{\tau\left(\lambda_{1}\right)}=\frac{d_{2}^{2}}{d_{1}^{2}} \mathrm{e}^{\tau\left(\lambda_{1}\right)} \tag{10.40}
\end{equation*}
$$

Same at λ_{2} :

$$
\begin{equation*}
\frac{F_{1}\left(\lambda_{2}\right)}{F_{2}\left(\lambda_{2}\right)}=\frac{d_{2}^{2}}{d_{1}^{2}} \mathrm{e}^{\tau\left(\lambda_{2}\right)} \tag{10.41}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{F_{1}\left(\lambda_{1}\right) / F_{1}\left(\lambda_{2}\right)}{F_{2}\left(\lambda_{1}\right) / F_{2}\left(\lambda_{2}\right)}=\mathrm{e}^{\tau\left(\lambda_{1}\right)-\tau\left(\lambda_{2}\right)} \tag{10.42}
\end{equation*}
$$

Take the logarithm of both sides and multiply with -2.5 :

$$
\begin{align*}
-2.5 \log \left(\frac{F_{1}\left(\lambda_{1}\right)}{F_{1}\left(\lambda_{2}\right)}\right)- & \left(-2.5 \log \left(\frac{F_{2}\left(\lambda_{1}\right)}{F_{2}\left(\lambda_{2}\right)}\right)\right) \\
& =\text { const. } \cdot\left(\tau\left(\lambda_{1}\right)-\tau\left(\lambda_{2}\right)\right) \tag{10.43}
\end{align*}
$$

Extinction, II

Now remember defi nition of magnitude

$$
\begin{equation*}
m\left(\lambda_{1}\right)-m\left(\lambda_{2}\right)=-2.5 \log \frac{F\left(\lambda_{1}\right)}{F\left(\lambda_{2}\right)} \tag{10.44}
\end{equation*}
$$

Therefore Eq. (10.43) reads

$$
\begin{align*}
\left(m_{1}\left(\lambda_{1}\right)-m_{1}\left(\lambda_{2}\right)\right)-\left(m_{2}\left(\lambda_{1}\right)\right. & \left.-m_{2}\left(\lambda_{2}\right)\right) \\
& =\text { const. } \cdot\left(\tau_{1}-\tau_{2}\right) \tag{10.45}
\end{align*}
$$

In astronomy, a color is defi ned as a difference of magnitudes, e.g. for the B and V fi lters:

$$
\begin{equation*}
\mathrm{B}-\mathrm{V}=m(\mathrm{~B})-m(\mathrm{~V}) \tag{10.46}
\end{equation*}
$$

Thus, Eq. (10.45) is difference between colors, or color

excess

$$
\begin{equation*}
E_{\lambda_{1}-\lambda_{2}}:=\left(m_{1}\left(\lambda_{1}\right)-m_{1}\left(\lambda_{2}\right)\right)-\left(m_{2}\left(\lambda_{1}\right)-m_{2}\left(\lambda_{2}\right)\right) \tag{10.47}
\end{equation*}
$$

Note that because of Eq. (10.45)

$$
\begin{equation*}
E_{\lambda_{1}-\lambda_{2}} \propto \tau_{1}-\tau_{2} \tag{10.48}
\end{equation*}
$$

Generally use normalized color excess,

$$
\begin{align*}
\frac{E(\lambda-\mathrm{V})}{E(\mathrm{~B}-\mathrm{V})} & =\frac{\tau(\lambda)-\tau(\mathrm{V})}{\tau \mathrm{B}-\tau \mathrm{V}} \tag{10.49}\\
& \propto \frac{\tau(\lambda)-\tau(\mathrm{V})}{\tau(\mathrm{B})-\tau(\mathrm{V})} \tag{10.50}\\
& \propto \tau(\lambda) \tag{10.51}\\
& \propto \sigma_{\mathrm{sca}}(\lambda) \tag{10.52}
\end{align*}
$$

Stellar spectra in the UV (Witt et al., 1984)
Overall extinction very similar, prominent feature at $1 / \lambda$ $4.6(\lambda=2170 \AA)$, strength of feature varies, position ver stable.

Extinction, IV

Observationally important is relationship between reddening $E(\mathrm{~B}-\mathrm{V})$ and extinction in V -band.
Extinction defi ned via

$$
\begin{equation*}
A_{\mathrm{V}}=\mathrm{V}-\mathrm{V}_{0} \tag{10.53}
\end{equation*}
$$

Now, normalized extinction was

$$
\begin{align*}
\frac{E(\lambda-\mathrm{V})}{E(\mathrm{~B}-\mathrm{V})} & =\frac{\left(m_{\lambda}-m_{\mathrm{V}}\right)-\left(m_{\lambda}-m_{\mathrm{V}}\right)_{0}}{E(\mathrm{~B}-\mathrm{V})} \tag{10.54}\\
& =\frac{m_{\lambda}-m_{\lambda, 0}-\left(m_{\mathrm{V}}-m_{\mathrm{V}, 0}\right)}{E(\mathrm{~B}-\mathrm{V})} \tag{10.55}\\
& =\frac{A_{\lambda}-A_{\mathrm{V}}}{E(\mathrm{~B}-\mathrm{V})} \tag{10.56}
\end{align*}
$$

But for $\lambda \rightarrow \infty$:

$$
\begin{equation*}
\frac{E(\lambda-\mathrm{V})}{E(\mathrm{~B}-\mathrm{V})} \rightarrow \text { const. }=: R \tag{10.57}
\end{equation*}
$$

where $R \sim 3.1 \pm 0.1$.
$\Longrightarrow A_{\mathrm{V}}$ known if $E(\mathrm{~B}-\mathrm{V})$ known!
Note also that $A_{\mathrm{V}} / E(\mathrm{~B}-\mathrm{V}) \propto r$ since $\tau=n \sigma_{\text {scat }} r$
\Longrightarrow can measure distance! Generally, $A_{V} \sim 1 \ldots 2 \mathrm{mag} \mathrm{pc}^{-1}$.

Normalized reddening observed roughly $\propto 1 / \lambda$.
Explanation: scattering of radiation on grains.
Overall theory very complicated...
In scattering, intensity will be

$$
\begin{equation*}
I=I_{0} \exp \left(-n \pi a^{2} Q l\right) \tag{10.58}
\end{equation*}
$$

where the quality factor Q has two components:

$$
\begin{equation*}
Q=Q_{\mathrm{abs}}+Q_{\mathrm{sca}} \tag{10.59}
\end{equation*}
$$

$Q_{\text {abs }}$: absorption,
$Q_{\text {sca }}$: scattering.
(see next slide)

Note that Q is proportional to the optical depth...

Defi ne Albedo of particles

$$
\begin{equation*}
\gamma=\frac{Q_{\text {sca }}}{Q_{\text {abs }}+Q_{\text {sca }}} \tag{10.60}
\end{equation*}
$$

(note that angular dependence in principle possible)

$Q_{\text {sca }}$ as function of $x=2 \pi a / \lambda$ for several dielectric constants m (Dyson\& Williams, Fig. 4.5; $m=1.33$ is water ice)

Detailed theory: Mie scattering; gives $Q \propto 1 / \lambda$ for small diameters $a \Longrightarrow$ as observed!

For detailed theory also need size distribution of grains.
Common assumption:

$$
\begin{equation*}
n(a)=A a^{-3.5} \tag{10.61}
\end{equation*}
$$

("MRN distribution"; Mathis, Rumpl, Nordsieck; $0.005 \mu \mathrm{~m}<a<0.25 \mu \mathrm{~m}$) determined from fitting extinction curves.

Overall 1/ λ-behavior understood with Mie scattering

2200 Å feature:

- graphite grains? Optical constants change dramatically around $2200 \AA$ for small graphite grains.
- Silicate grains?
- Polycyclic aromatic hydrocarbons (PAHs)?

Solution not yet known, graphite seems slightly preferred

IC 435 (reflection nebula close to horsehead; Calzetti et al., 1995, Fig. 1)

IC 435: Reflection nebula: reflection of star light in shell of dust surrounding the star.

IUE Observations of IC 435: Extinction $A(\lambda) / E(\mathrm{~B}-\mathrm{V})$ stronger than "standard" \Longrightarrow Evidence for concentration of dust.

To obtain information on dust: perform Monte Carlo simulations of scattering in dust.
(use correct prescription for scattering off the dust grains).
Output of simulation: intensity profile, and scattered and absorbed fraction of radiation as function of wavelength.

IAAT

Calzetti et al., 1995, Fig. 2
Monte Carlo Simulation of optical intensity profile of reflection nebula consistent with scattering off dust shell with $\tau \sim 0.3$ around star.

Dust profile: inner low-density sphere with $r=0.16 \mathrm{pc}$, shell with gradually increasing density with $0.16 \mathrm{pc}<r<0.3 \mathrm{pc}$, decrease outside.

Calzetti et al., 1995, Fig. 5

Important result of the study of reflection nebulae:
$2170 \AA$ feature due to absorption, not scattering.

courtesy CXC
Scattering off dust also important in X-rays.
Allows to determine grain composition.
X-ray timing of halo also gives independent measure of distance to X-ray point source if scattering cloud is in foreground.

Dust Models

Major dust models:

- MRN model
- Core-mantle models
- post-IRAS models

Models must take constraints on dust models into account:

- extinction curve (IR to UV)
- abundance deficiency of ISM gas phase
- (narrow) spectral features

See Witt, IAU Symp. 197, for a discussion of results.

Dust Models: MRN

Draine \& Lee, 1984, Fig. 7
MRN Model (Mathis, Rumpl, Nordsieck, 1977):
"mother of all dust models".
later upgrades: Draine \& Lee (1984), Draine \& Anderson (1985)

- Pure power-law distribution of grains, $n(a) \propto a^{-3.5}$
- No small grains ($<5 \mathrm{~nm}$), no very large grains ($>250 \mathrm{~nm}$).
Either:
- all C ends up as CO, remaining O-atmos make silicates and metal oxides.
- all O ends up in CO, remaining C forms carbonaceous components (graphite and other stuff...)

IRAS All Sky Map (blue: 12 micron, green: 60 micron, red: 100 micron) Mainly thermal emission from small particles.

IAAT

Draine \& Anderson

Also thermal infrared emission necessary \Longrightarrow add population of very small grains with $3 \mathrm{~nm}<r<5 \mathrm{~nm}$ (i.e., between large molecules and small MRN grains).

Schmidt, Cohen, Margon (1980)

Closely associated with dust: Extended Red Emission, seen first in the Red Rectangle around HD 44179, and now in many (but not all) reflection nebulae. Normally associated with H_{2} emission. Most likely fluorescence from complex molecules

IAAT

Grains
(Кysuef) xntu

(Boulanger et al.; 1998)
Unidentified emission structures seen at 3.3, 6.2, 7.7, $8.6,11.3 \mu \mathrm{~m}$ seen in H II regions, YSOs, diffuse ISM, and even AGN: "unidentified infrared bands"

PAH Structures

ORION EMISSION COMPARED TO THE RAMAN SPECTRUM OF AUTO SOOT

UIB and ERE emission might be related to polycyclic aromatic hydrocarbons (PAHs), complex large carbonaceous molecules (UIB: related to C-C, C-H modes)

IAAT

PAHs, II

Allamandola, Tielens, Barker (1989)
$\mathrm{C}-\mathrm{H}$ stretch at $3.3 \mu \mathrm{~m}$ due to stretching in aromatic ring (IR molecular fluorescence due to UV photons).

IAAT

Dśert, Boulanger, Puget (1990)

Inclusion of PAHs in dust models can also account for extinction curve, need three distinct populations:

- big grains (15 nm to 110 nm),
- very small grains (1.2 nm to 15 nm)
- PAHs (<1.2 nm)

Also predicts UIB emission!
Problems with Désert et al. model is small size of large grains, might be inconsistent with X-ray halos. . . Possible solution: fluffy grains (Fogel \& Leung, 1998)

Where does dust come from?
Three potential sources:

1. Condensation out of the ISM
2. Condensation in cool stellar outflows
3. Condensation in protostars
ad 1) only possible in very dense molecular clouds: formation of clusters of 10. . . 20 atoms as "condensation nuclei"; accretion of further molecules via collisions.

Due to small densities dust formation timescale very long (10^{8} years), thus rather impossible.

Dust is mainly generated in stars and then ejected into the ISM.

Dust Formation

(Sedlmayr \& Krüger; 1997)

Dust formation in stars

Stellar atmospheres have much higher density than GMCs (solar photosphere: $10^{17} \mathrm{~cm}^{-3}$, late type giants:
$\sim 10^{15} \mathrm{~cm}^{-3}$, compared to $10^{6} \mathrm{~cm}^{-3}$ in GMCs)
\Longrightarrow much higher condensation probability.
General process:

1. formation of molecules
2. accretion of more material, formation of clusters
3. formation of macroscopic particles

Dust Formation

(Sedlmayr \& Krüger; 1997)

Complex nonstationary chemistry makes things very complicated...

IAAT

Dust Formation

(Sedlmayr \& Krüger; 1997)

Possible chemical reaction network for generation of PAHs in C-stars.

The Orion Nebula and Trapezium Cluster (VLT ANTU + ISAAC)

Overview of star formation
In general, star formation will occur in several stages:

1. Initial collapse of gas cloud

2. Formation of Protostar
3. Formation of Disk and Wind
4. "Birth of star"

This and the following heavily based on good summary by Kevin Volk, Calgary; see also Shu, Adams, Liziano, ARAA, 1987

Initial Collapse, I

Typical GMC density: several 100 atoms cm^{-3}. To produce star need $\sim 1 M_{\odot}$. This corresponds to radius of about 0.5 pc .

Therefore: reduce size of cloud by factor 10^{7}.

Questions:

- How to get rid of angular momentum?
- How to get rid of magnetic field?
- How to get rid of potential energy?

Binding energy of sphere:

$$
\begin{equation*}
V=-\frac{G M^{2}}{r} \sim 10^{41} \mathrm{erg} \tag{10.62}
\end{equation*}
$$

for $M=1 \mathrm{M}_{\odot}$ and $r=0.5 \mathrm{pc}$.
This energy needs to be radiated away in very short time!

First process is initial collapse.

Cloud unstable to collapse if mass exceeds Jeans mass,

$$
\begin{equation*}
M_{\mathrm{J}}=\left(\frac{\pi k T}{\mu m_{\mathrm{H}} G}\right)^{1.5} \rho^{-0.5} \sim 18 \mathrm{M}_{\odot} T^{1.5} n^{-0.5} \tag{10.63}
\end{equation*}
$$

Fragments of GMC of this mass probably formed in shocks; either internal (turbulence) or external (SNRs?)

Mass of fragment strongly depends on magnetic fi eld (pressure $\propto B^{2}$ can stop collapse) \Longrightarrow need to get B-fi eld out of cloud via ambipolar diffusion.

Ions in cloud coupled to B-fi eld, neutrals are not \Longrightarrow neutrals only interact with ions (=B-fi eld) via collisions \Longrightarrow if B-fi eld gradient: acceleration of ions \Longrightarrow separation of speeds \Longrightarrow ions forced out of cloud, B-fi eld follows \Longrightarrow B-fi eld (mainly) diffuses out. Timescale: few million years; uncertainty very large.
also: does not work for more massive clouds

courtesy MSX Galactic Plane Survey; 8 micron
Example for clumpy star forming region: Rosette nebula

Shu et al.
Clumps in the Rosette nebula.
Mass inferred: a few solar masses, radii measured 0.1 pc.
Surrounding envelope: several $100 \mathrm{M}_{\odot}$.

Once core collapses \Longrightarrow formation of protostar.

Termination of infall once $\sim 0.3 \mathrm{M}_{\odot}$ accreted (ignition of deuterium). Star remains fully convective until $0.5 \mathrm{M}_{\odot}$ reached.

Core collapses first, then surrounding matter collapses onto core. Typical timescale $\sim 10^{-5} \mathrm{M}_{\odot}$ year ${ }^{-1}$ for $T \sim 35 \mathrm{~K}$ and typical magnetic fields.

Some net angular momentum of clump \Longrightarrow Material rotates \Longrightarrow disk forms around protostar (typical radius several 100 AU). Shortly later: outflow forms, either as bipolar outflow or as jets.

Origin of outflow unclear, probably related to some MHD instability, similar to active galactic nuclei.

General observational fact: all observed systems with disks have outflows.

All stellar objects before reaching the main sequence are called Young Stellar Objects (YSOs). Most prominent examples: T Tauri stars and FU Orionis stars.

Definition of T Tau Star:

- Irregular variability, amplitude up to 3 mag
- Spectral type later than F5
- strong emission lines in Ca II H and K and hydrogen lines, presence of strong Li absorption at $6707 \AA$ Å.

- low intrinsic luminosity

- association with nebulosity
in weak emission line T Tau stars, emission lines are (guess what) weaker, only 10% of all T Tau are classical "strong-emission line" T Taus.

Formation of Disk and Wind, III

Kenyon et al. (1998)

Typical spectra clockwise:

- weak-line T Tau star (LkCa3),
- classical T Tau (BP Tau, DP Tau),
- to strong emission line T Tauri star DG Tau.

Emission line analysis gives in disk accretion rates of $\dot{M} \sim 10^{-7} \ldots 10^{-9} \mathrm{M}_{\odot}$ year $^{-1}$.

Hartmann \& Kenyon (1996)
Special objects: FU Ori Stars: very strong outbursts!

Hartmann \& Kenyon (1996)
FU Ori Star outbursts caused by extreme increase of mass accretion rate.

Formation of Disk and Wind, VI

Spectral line profiles of FU Ori stars indicate presence of accretion disk in these systems.

IRAS 04016+2610
\longmapsto

Kawamura et al. (1999)
Molecular outflow around IRAS 20126+4106, contour lines: blueshifted (solid) and redshifted (dashed) CO emission, greyscale images: top: NH_{3}, bottom: SiO.

Herbig Haro Objects: Shocks from jets of YSOs typical speeds: $70 . . .100 \mathrm{~km} / \mathrm{s}$; spectral lines shows shoc excitation

HH34, full image (courtesy J. Bally)

The Multiple Star System of HH111

courtesy Bo Reipurt Ka Chun Yu, J. Bally

Outflow removes most surrounding material \Longrightarrow Star becomes visible to outside observers.

After a few million years \Longrightarrow evolution towards main sequence
(see class on stellar evolution for this).

PRC95-44a - ST Scl OPO - November 2, 1995
J. Hester and P. Scowen (AZ State Univ.), NASA

Evaporating gaseous globules (EGGs): stars ionizing surrounding material away.

IR-View of "Pillars of Creation" at Centre of Eagle Nebula (VLT ANTU + ISAAC)

© European Southern Observatory

Protoplanetary Disks in the Orion Nebula Hubble Space Telescope •WFPC2

NASA, J. Bally (University of Colorado), H.Throop (SWRI), and C.R. O'Dell (Vanderbilt University) STScl-PRC01-13

10-99

Bibliography

Solomon, P. M., \& Rivolo, A. R., 1989, ApJ, 339, 919
Solomon, P. M., Rivolo, A. R., Barrett, J., \& Yahil, A., 1987, ApJ, 319, 730

